Asymptotics of Eigenvalues and Eigenfunctionsof the Sturm-Liouville Operator with a Singular Potential on a Star Graph: I

被引:1
作者
Zuev, K. P. [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow 119991, Russia
关键词
differential operators on graphs; Sturm-Liouville operator; spectral problem; singular potential;
D O I
10.1134/S0012266125020028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Spectral problems on the three-edge star graph with a Sturm-Liouville operator defined on each of the edges are studied. The spectral properties of such operators are analyzed; in particular, asymptotic formulas for the eigenvalues and eigenfunctions of the operator with the Dirichlet boundary conditions at the free ends and the continuity and Kirchhoff conditions at the common vertex are obtained. The potential in the Sturm-Liouville problem is assumed to be singular; namely, it is the derivative of a square integrable function in the sense of distributions.
引用
收藏
页码:154 / 168
页数:15
相关论文
共 14 条
[1]  
Bondarenko N., 2015, Tamkang J. Math, V46, P229
[2]   Boundary Value Problem on a Geometric Star-Graph with a Nonlinear Condition at a Node [J].
Burlutskaya, M. Sh. ;
Zvereva, M. B. ;
Kamenskii, M. I. .
MATHEMATICAL NOTES, 2023, 114 (1-2) :275-279
[3]  
Exner P., 2007, P S PURE MATH, V77
[4]   Quantum graphs: I. Some basic structures [J].
Kuchment, P .
WAVES IN RANDOM MEDIA, 2004, 14 (01) :S107-S128
[5]   Graph models for waves in thin structures [J].
Kuchment, P .
WAVES IN RANDOM MEDIA, 2002, 12 (04) :R1-R24
[6]  
Pokorny Yu.V., 2005, Differentsial'nyye uravneniya na geometricheskikh grafakh (Differential Equations onGeometrical Graphs)
[7]   FREE-ELECTRON NETWORK MODEL FOR CONJUGATED SYSTEMS .1. THEORY [J].
RUEDENBERG, K ;
SCHERR, CW .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (09) :1565-1581
[8]   Inverse Sturm-Liouville Problem with Nonseparated Boundary Conditions on a Geometric Graph [J].
Sadovnichii, V. A. ;
Sultanaev, Ya. T. ;
Akhtyamov, A. M. .
DIFFERENTIAL EQUATIONS, 2019, 55 (02) :194-204
[9]  
Savchuk A.M., 2020, Sovrem. Mat. Fundam. Napravl, V66, P373
[10]  
Savchuk A.M., 2019, Direct and inverse spectral problems for the Sturm-Liouville operator and the Dirac system