Watermarking Neuromorphic Brains: Intellectual Property Protection in Spiking Neural Networks

被引:0
作者
Poursiami, Hamed [1 ]
Alouani, Ihsen [2 ]
Parsa, Maryam [1 ]
机构
[1] George Mason Univ, ECE Dept, Fairfax, VA 22030 USA
[2] Queens Univ Belfast, Ctr Secure Informat Technol, Belfast, Antrim, North Ireland
来源
2024 INTERNATIONAL CONFERENCE ON NEUROMORPHIC SYSTEMS, ICONS | 2024年
关键词
Intellectual Property Protection; Spiking Neural Networks; Model Watermarking; Neuromorphic Computing;
D O I
10.1109/ICONS62911.2024.00050
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As spiking neural networks (SNNs) gain traction in deploying neuromorphic computing solutions, protecting their intellectual property (IP) has become crucial. Without adequate safeguards, proprietary SNN architectures are at risk of theft, replication, or misuse, which could lead to significant financial losses for the owners. While IP protection techniques have been extensively explored for artificial neural networks (ANNs), their applicability and effectiveness for the unique characteristics of SNNs remain largely unexplored. In this work, we pioneer an investigation into adapting two prominent watermarking approaches, namely, fingerprint-based and backdoor-based mechanisms to secure proprietary SNN architectures. We conduct thorough experiments to evaluate the impact on fidelity, resilience against overwrite threats, and resistance to compression attacks when applying these watermarking techniques to SNNs, and drawing comparisons with their ANN counterparts. This study lays the groundwork for developing neuromorphic-aware IP protection strategies tailored to the distinctive dynamics of SNNs.
引用
收藏
页码:287 / 294
页数:8
相关论文
共 28 条
[1]  
Adi Y, 2018, PROCEEDINGS OF THE 27TH USENIX SECURITY SYMPOSIUM, P1615
[2]   A Low Power, Fully Event-Based Gesture Recognition System [J].
Amir, Arnon ;
Taba, Brian ;
Berg, David ;
Melano, Timothy ;
McKinstry, Jeffrey ;
Di Nolfo, Carmelo ;
Nayak, Tapan ;
Andreopoulos, Alexander ;
Garreau, Guillaume ;
Mendoza, Marcela ;
Kusnitz, Jeff ;
Debole, Michael ;
Esser, Steve ;
Delbruck, Tobi ;
Flickner, Myron ;
Modha, Dharmendra .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :7388-7397
[3]  
Bellec G, 2018, ADV NEUR IN, V31
[4]   A Survey of Robotics Control Based on Learning-Inspired Spiking Neural Networks [J].
Bing, Zhenshan ;
Meschede, Claus ;
Roehrbein, Florian ;
Huang, Kai ;
Knoll, Alois C. .
FRONTIERS IN NEUROROBOTICS, 2018, 12
[5]   2022 roadmap on neuromorphic computing and engineering [J].
Christensen, Dennis, V ;
Dittmann, Regina ;
Linares-Barranco, Bernabe ;
Sebastian, Abu ;
Le Gallo, Manuel ;
Redaelli, Andrea ;
Slesazeck, Stefan ;
Mikolajick, Thomas ;
Spiga, Sabina ;
Menzel, Stephan ;
Valov, Ilia ;
Milano, Gianluca ;
Ricciardi, Carlo ;
Liang, Shi-Jun ;
Miao, Feng ;
Lanza, Mario ;
Quill, Tyler J. ;
Keene, Scott T. ;
Salleo, Alberto ;
Grollier, Julie ;
Markovic, Danijela ;
Mizrahi, Alice ;
Yao, Peng ;
Yang, J. Joshua ;
Indiveri, Giacomo ;
Strachan, John Paul ;
Datta, Suman ;
Vianello, Elisa ;
Valentian, Alexandre ;
Feldmann, Johannes ;
Li, Xuan ;
Pernice, Wolfram H. P. ;
Bhaskaran, Harish ;
Furber, Steve ;
Neftci, Emre ;
Scherr, Franz ;
Maass, Wolfgang ;
Ramaswamy, Srikanth ;
Tapson, Jonathan ;
Panda, Priyadarshini ;
Kim, Youngeun ;
Tanaka, Gouhei ;
Thorpe, Simon ;
Bartolozzi, Chiara ;
Cleland, Thomas A. ;
Posch, Christoph ;
Liu, Shihchii ;
Panuccio, Gabriella ;
Mahmud, Mufti ;
Mazumder, Arnab Neelim .
NEUROMORPHIC COMPUTING AND ENGINEERING, 2022, 2 (02)
[6]  
Deng L., 2012, IEEE Signal Processing Magazine, V29, P141, DOI [DOI 10.1109/MSP.2012.22114772, 10.1109/msp.2012.2211477]
[7]   Training Spiking Neural Networks Using Lessons From Deep Learning [J].
Eshraghian, Jason K. ;
Ward, Max ;
Neftci, Emre O. ;
Wang, Xinxin ;
Lenz, Gregor ;
Dwivedi, Girish ;
Bennamoun, Mohammed ;
Jeong, Doo Seok ;
Lu, Wei D. .
PROCEEDINGS OF THE IEEE, 2023, 111 (09) :1016-1054
[8]  
Gerstner W, 2014, NEURONAL DYNAMICS: FROM SINGLE NEURONS TO NETWORKS AND MODELS OF COGNITION, P1, DOI 10.1017/CBO9781107447615
[9]   Which model to use for cortical spiking neurons? [J].
Izhikevich, EM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (05) :1063-1070
[10]   Optimizing Deeper Spiking Neural Networks for Dynamic Vision Sensing [J].
Kim, Youngeun ;
Panda, Priyadarshini .
NEURAL NETWORKS, 2021, 144 :686-698