Time Series Data Classification using the Knowledge-Augmented Transformer Model

被引:0
作者
Chung, Hyun-seok [1 ]
Hyun, Sun-young [1 ]
Lee, Chang-eun [2 ]
Ha, Young-guk [3 ]
机构
[1] SmartLabs, Seoul, South Korea
[2] ETRI, Daejeon, South Korea
[3] Konkuk Univ, Dept Comp Sci & Engn, Seoul, South Korea
来源
2025 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING, BIGCOMP | 2025年
关键词
Attention; Transformer; Time Series Classification; Knowledge Augmentation;
D O I
10.1109/BigComp64353.2025.00087
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time Series Classification predicts outcomes by analyzing sequential data that changes over time. As the complexity of time series data increases, particularly in scenarios involving dynamic relationships, existing models face limitations. This paper proposes a classification model using an encoder-based transformer with knowledge augmentation to address these challenges. The model preprocesses time-series data into a graph structure, enabling effective learning of intricate relationships. Relational attention and temporal attention enhance focus on critical relationships and time points, respectively. Additionally, symbolic reasoning through knowledge augmentation allows the model to capture complex, implicit information. Experimental results show that the proposed model outperforms existing SOTA model on complex datasets like SC2EGSet.
引用
收藏
页码:419 / 420
页数:2
相关论文
共 8 条
[1]  
Beltagy I, 2020, Arxiv, DOI arXiv:2004.05150
[2]   SC2EGSet: StarCraft II Esport Replay and Game-state Dataset [J].
Bialecki, Andrzej ;
Jakubowska, Natalia ;
Dobrowolski, Pawel ;
Bialecki, Piotr ;
Krupinski, Leszek ;
Szczap, Andrzej ;
Bialecki, Robert ;
Gajewski, Jan .
SCIENTIFIC DATA, 2023, 10 (01)
[3]   fMRI studies of temporal attention: allocating attention within, or towards, time [J].
Coull, JT .
COGNITIVE BRAIN RESEARCH, 2004, 21 (02) :216-226
[4]   Multivariate LSTM-FCNs for time series classification [J].
Karim, Fazle ;
Majumdar, Somshubra ;
Darabi, Houshang ;
Harford, Samuel .
NEURAL NETWORKS, 2019, 116 :237-245
[5]  
Lewis P, 2020, ADV NEUR IN, V33
[6]  
Vaswani A, 2017, ADV NEUR IN, V30
[7]  
Veličkovic P, 2018, Arxiv, DOI [arXiv:1710.10903, DOI 10.48550/ARXIV.1710.10903, 10.48550/arXiv.1710.10903, DOI 10.17863/CAM.48429]
[8]  
Xi Yunjia, 2024, P 18 ACM C REC SYST