Workloads in the clouds

被引:34
作者
Calzarossa M.C. [1 ]
Vedova M.L.D. [2 ]
Massari L. [1 ]
Petcu D. [3 ]
Tabash M.I.M. [1 ]
Tessera D. [2 ]
机构
[1] Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Via Ferrata 5, Pavia
[2] Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, Brescia
[3] Departament Informatica, Universitatea de Vest din Timişoara, Bvd. Vasile Pârvan 4, Timişoara
来源
Springer Series in Reliability Engineering | 2016年 / PartF1卷
关键词
Cloud computing; Failure; Monitoring; Reliability; Resource management; Scheduling; Workload characterization;
D O I
10.1007/978-3-319-30599-8_20
中图分类号
学科分类号
摘要
Despite the fast evolution of cloud computing, up to now the characterization of cloud workloads has received little attention. Nevertheless, a deep understanding of their properties and behavior is essential for an effective deployment of cloud technologies and for achieving the desired service levels. While the general principles applied to parallel and distributed systems are still valid, several peculiarities require the attention of both researchers and practitioners. The aim of this chapter is to highlight the most relevant characteristics of cloud workloads as well as identify and discuss the main issues related to their deployment and the gaps that need to be filled. © Springer International Publishing Switzerland 2016.
引用
收藏
页码:525 / 550
页数:25
相关论文
共 93 条
[1]  
Alhamazani K., Ranjan R., Mitra K., Rabhi F., Jayaraman P., Khan S.U., Guabtni A., Bhatnagar V., An overview of the commercial cloud monitoring tools: Research dimensions, design issues, and state-of-the-art, Computing, 97, 4, pp. 357-377, (2015)
[2]  
Alonso J., Trivedi K., Software rejuvenation and its application in distributed systems, Quantitative Assessments of Distributed Systems: Methodologies and Techniques, pp. 301-325, (2015)
[3]  
Araujo J., Matos R., Alves V., Maciel P., de Souza F.V., Matias R., Trivedi K.S., Software aging in the Eucalyptus cloud computing infrastructure: Characterization and rejuvenation, ACM J Emerg Technol Comput Syst, 10, 1, pp. 1-11, (2014)
[4]  
Ardagna C., Damiani E., Frati F., Rebeccani D., Ughetti M., Scalability patterns for Platform-as-a-Service, Proceedings of the 5Th International Conference on Cloud computing—CLOUD’12, pp. 718-725, (2012)
[5]  
Armbrust M., Fox A., Griffith R., Joseph A.D., Katz R., Konwinski A., Lee G., Patterson D., Rabkin A., Stoica I., Zaharia M., A view of cloud computing, Commun ACM, 53, 4, pp. 50-58, (2010)
[6]  
Atikoglu B., Xu Y., Frachtenberg E., Jiang S., Paleczny M., Workload analysis of a large-scale key-value store, Proceedings of the 12Th ACM SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems, pp. 53-64, (2012)
[7]  
Azmandian F., Moffie M., Dy J.G., Aslam J.A., Kaeli D.R., Workload characterization at the virtualization layer, Proceedings of the 19Th International Symposium on Modeling, Analysis Simulation of Computer and Telecommunication systems—MASCOTS’11, pp. 63-72, (2011)
[8]  
Bala A., Chana I., Intelligent failure prediction models for scientific workflows, Expert Syst Appl, 42, 3, pp. 980-989, (2015)
[9]  
Beaumont O., Eyraud-Dubois L., Lorenzo Del Castillo J.A., Analyzing real cluster data for formulating allocation algorithms in cloud platforms, Proceedings of the 26Th International Symposium on Computer Architecture and High Performance computing—SBAC-PAD, pp. 302-309, (2014)
[10]  
Bi J., Zhu Z., Tian R., Wang Q., Dynamic provisioning modeling for virtualized multi-tier applications in cloud data center, Proceedings of the 3Rd International Conference on Cloud computing—CLOUD’10, pp. 370-377, (2010)