Hi-CMD: Hierarchical Cross-Modality Disentanglement for Visible-Infrared Person Re-Identification

被引:268
作者
Choi, Seokeon [1 ]
Lee, Sumin [1 ]
Kim, Youngeun [1 ]
Kim, Taekyung [1 ]
Kim, Changick [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Daejeon, South Korea
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020) | 2020年
关键词
D O I
10.1109/CVPR42600.2020.01027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visible-infrared person re-identification (VI-ReID) is an important task in night-time surveillance applications, since visible cameras are difficult to capture valid appearance information under poor illumination conditions. Compared to traditional person re-identification that handles only the intra-modality discrepancy, VI-ReID suffers from additional cross-modality discrepancy caused by different types of imaging systems. To reduce both intra- and cross-modality discrepancies, we propose a Hierarchical Cross-Modality Disentanglement (Hi-CMD) method, which automatically disentangles ID-discriminative factors and IDexcluded factors from visible-thermal images. We only use ID-discriminative factors for robust cross-modality matching without ID-excluded factors such as pose or illumination. To implement our approach, we introduce an ID-preserving person image generation network and a hierarchical feature learning module. Our generation network learns the disentangled representation by generating a new cross-modality image with different poses and illuminations while preserving a person's identity. At the same time, the feature learning module enables our model to explicitly extract the common ID-discriminative characteristic between visible-infrared images. Extensive experimental results demonstrate that our method outperforms the state-of-the-art methods on two VI-ReID datasets. The source code is available at: https://github.com/bismex/HiCMD.
引用
收藏
页码:10254 / 10263
页数:10
相关论文
共 45 条
[1]  
[Anonymous], 2019, IEEE T INFORM FORENS
[2]   Towards Open-Set Identity Preserving Face Synthesis [J].
Bao, Jianmin ;
Chen, Dong ;
Wen, Fang ;
Li, Houqiang ;
Hua, Gang .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6713-6722
[3]   Exploiting Spatial-temporal Relationships for 3D Pose Estimation via Graph Convolutional Networks [J].
Cai, Yujun ;
Ge, Liuhao ;
Liu, Jun ;
Cai, Jianfei ;
Cham, Tat-Jen ;
Yuan, Junsong ;
Thalmann, Nadia Magnenat .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :2272-2281
[4]  
Dai PY, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P677
[5]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]   Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification [J].
Deng, Weijian ;
Zheng, Liang ;
Ye, Qixiang ;
Kang, Guoliang ;
Yang, Yi ;
Jiao, Jianbin .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :994-1003
[8]  
Ge YX, 2018, ADV NEUR IN, V31
[9]  
Gonzalez-Garcia A, 2018, ADV NEUR IN, V31
[10]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672