JS']JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds

被引:99
作者
Hu, Zeyu [1 ]
Zhen, Mingmin [1 ]
Bai, Xuyang [1 ]
Fu, Hongbo [2 ]
Tai, Chiew-lan [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Kowloon, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Kowloon Tong, Hong Kong, Peoples R China
来源
COMPUTER VISION - ECCV 2020, PT XX | 2020年 / 12365卷
关键词
Semantic segmentation; Semantic edge detection; 3D point clouds; 3D scene understanding;
D O I
10.1007/978-3-030-58565-5_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic segmentation and semantic edge detection can be seen as two dual problems with close relationships in computer vision. Despite the fast evolution of learning-based 3D semantic segmentation methods, little attention has been drawn to the learning of 3D semantic edge detectors, even less to a joint learning method for the two tasks. In this paper, we tackle the 3D semantic edge detection task for the first time and present a new two-stream fully-convolutional network that jointly performs the two tasks. In particular, we design a joint refinement module that explicitly wires region information and edge information to improve the performances of both tasks. Further, we propose a novel loss function that encourages the network to produce semantic segmentation results with better boundaries. Extensive evaluations on S3DIS and ScanNet datasets show that our method achieves on par or better performance than the state-of-the-art methods for semantic segmentation and outperforms the baseline methods for semantic edge detection. Code release: https://github.com/hzykent/JSENet.
引用
收藏
页码:222 / 239
页数:18
相关论文
共 63 条
[11]   ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes [J].
Dai, Angela ;
Chang, Angel X. ;
Savva, Manolis ;
Halber, Maciej ;
Funkhouser, Thomas ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2432-2443
[12]   3D Semantic Segmentation with Submanifold Sparse Convolutional Networks [J].
Graham, Benjamin ;
Engelcke, Martin ;
van der Maaten, Laurens .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9224-9232
[13]  
Hariharan B, 2011, IEEE I CONF COMP VIS, P991, DOI 10.1109/ICCV.2011.6126343
[14]  
Hermosilla P, 2018, ACM T GRAPHIC, V37, DOI 10.1145/3272127.3275110
[15]  
Hu Y., 2019, Panoptic edge detection
[16]   TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes [J].
Huang, Jingwei ;
Zhang, Haotian ;
Yi, Li ;
Funkhouser, Thomas ;
Niessner, Matthias ;
Guibas, Leonidas .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4435-4444
[17]   Recurrent Slice Networks for 3D Segmentation of Point Clouds [J].
Huang, Qiangui ;
Wang, Weiyue ;
Neumann, Ulrich .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2626-2635
[18]   Multi-view PointNet for 3D Scene Understanding [J].
Jaritz, Maximilian ;
Gu, Jiayuan ;
Su, Hao .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :3995-4003
[19]   Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation [J].
Jiang, Li ;
Zhao, Hengshuang ;
Liu, Shu ;
Shen, Xiaoyong ;
Fu, Chi-Wing ;
Jia, Jiaya .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :10432-10440
[20]   A-CNN: Annularly Convolutional Neural Networks on Point Clouds [J].
Komarichev, Artem ;
Zhong, Zichun ;
Hua, Jing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :7413-7422