JS']JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds

被引:99
作者
Hu, Zeyu [1 ]
Zhen, Mingmin [1 ]
Bai, Xuyang [1 ]
Fu, Hongbo [2 ]
Tai, Chiew-lan [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Kowloon, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Kowloon Tong, Hong Kong, Peoples R China
来源
COMPUTER VISION - ECCV 2020, PT XX | 2020年 / 12365卷
关键词
Semantic segmentation; Semantic edge detection; 3D point clouds; 3D scene understanding;
D O I
10.1007/978-3-030-58565-5_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic segmentation and semantic edge detection can be seen as two dual problems with close relationships in computer vision. Despite the fast evolution of learning-based 3D semantic segmentation methods, little attention has been drawn to the learning of 3D semantic edge detectors, even less to a joint learning method for the two tasks. In this paper, we tackle the 3D semantic edge detection task for the first time and present a new two-stream fully-convolutional network that jointly performs the two tasks. In particular, we design a joint refinement module that explicitly wires region information and edge information to improve the performances of both tasks. Further, we propose a novel loss function that encourages the network to produce semantic segmentation results with better boundaries. Extensive evaluations on S3DIS and ScanNet datasets show that our method achieves on par or better performance than the state-of-the-art methods for semantic segmentation and outperforms the baseline methods for semantic edge detection. Code release: https://github.com/hzykent/JSENet.
引用
收藏
页码:222 / 239
页数:18
相关论文
共 63 条
[1]   Devil is in the Edges: Learning Semantic Boundaries from Noisy Annotations [J].
Acuna, David ;
Kar, Amlan ;
Fidler, Sanja .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11067-11075
[2]   3D Semantic Parsing of Large-Scale Indoor Spaces [J].
Armeni, Iro ;
Sener, Ozan ;
Zamir, Amir R. ;
Jiang, Helen ;
Brilakis, Ioannis ;
Fischer, Martin ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1534-1543
[3]   3DmFV: Three-Dimensional Point Cloud Classification in Real-Time Using Convolutional Neural Networks [J].
Ben-Shabat, Yizhak ;
Lindenbaum, Michael ;
Fischer, Anath .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04) :3145-3152
[4]   Semantic Segmentation with Boundary Neural Fields [J].
Bertasius, Gedas ;
Shi, Jianbo ;
Torresani, Lorenzo .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3602-3610
[5]   High-for-Low and Low-for-High: Efficient Boundary Detection from Deep Object Features and its Applications to High-Level Vision [J].
Bertasius, Gedas ;
Shi, Jianbo ;
Torresani, Lorenzo .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :504-512
[6]   Pointwise Convolutional Neural Networks [J].
Binh-Son Hua ;
Minh-Khoi Tran ;
Yeung, Sai-Kit .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :984-993
[7]  
Boulch A., 2017, 3dor@ eurographics, V3, P17
[8]   FusionNet: Edge Aware Deep Convolutional Networks for Semantic Segmentation of Remote Sensing Harbor Images [J].
Cheng, Dongcai ;
Meng, Gaofeng ;
Xiang, Shiming ;
Pan, Chunhong .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (12) :5769-5783
[9]   4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks [J].
Choy, Christopher ;
Gwak, JunYoung ;
Savarese, Silvio .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3070-3079
[10]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554