RAFT: Recurrent All-Pairs Field Transforms for Optical Flow

被引:1663
作者
Teed, Zachary [1 ]
Deng, Jia [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
来源
COMPUTER VISION - ECCV 2020, PT II | 2020年 / 12347卷
基金
美国国家科学基金会;
关键词
D O I
10.1007/978-3-030-58536-5_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce Recurrent All-Pairs Field Transforms (RAFT), a new deep network architecture for optical flow. RAFT extracts per-pixel features, builds multi-scale 4D correlation volumes for all pairs of pixels, and iteratively updates a flow field through a recurrent unit that performs lookups on the correlation volumes. RAFT achieves state-of-the-art performance. On KITTI, RAFT achieves an F1-all error of 5.10%, a 16% error reduction from the best published result (6.10%). On Sintel (final pass), RAFT obtains an end-point-error of 2.855 pixels, a 30% error reduction from the best published result (4.098 pixels). In addition, RAFT has strong cross-dataset generalization as well as high efficiency in inference time, training speed, and parameter count. Code is available at https://github.com/princeton-vl/RAFT.
引用
收藏
页码:402 / 419
页数:18
相关论文
共 52 条
[1]   Learned Primal-Dual Reconstruction [J].
Adler, Jonas ;
Oktem, Ozan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) :1322-1332
[2]   Solving ill-posed inverse problems using iterative deep neural networks [J].
Adler, Jonas ;
Oktem, Ozan .
INVERSE PROBLEMS, 2017, 33 (12)
[3]  
Agrawal A, 2019, ADV NEUR IN, V32
[4]  
Amos B, 2017, PR MACH LEARN RES, V70
[5]  
Bai S., 2019, Adv. Neural Inf. Process. Syst., P688
[6]  
Bai SJ, 2019, Arxiv, DOI arXiv:1810.06682
[7]   Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation [J].
Bailer, Christian ;
Taetz, Bertram ;
Stricker, Didier .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :4015-4023
[8]   ScopeFlow: Dynamic Scene Scoping for Optical Flow [J].
Bar-Haim, Aviram ;
Wolf, Lior .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :7995-8004
[9]  
Black M. J., 1993, [1993] Proceedings Fourth International Conference on Computer Vision, P231, DOI 10.1109/ICCV.1993.378214
[10]  
Boski M, 2017, 2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS)