Generalized Grobner Bases and New Properties of Multivariate Difference Dimension Polynomials

被引:0
作者
Levin, Alexander [1 ]
机构
[1] Catholic Univ Amer, Washington, DC 20064 USA
来源
PROCEEDINGS OF THE 2021 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, ISSAC 2021 | 2021年
关键词
Inversive difference field; Inversive difference module; Module of Kahler differentials; Grobner basis;
D O I
10.1145/3452143.3465544
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a method of Grobner bases with respect to several term orderings and use it to obtain new results on multivariate dimension polynomials of inversive difference modules. Then we use the difference structure of the module of Kahler differentials associated with a finitely generated inversive difference field extension of a given difference transcendence degree to describe the form of a multivariate difference dimension polynomial of the extension.
引用
收藏
页码:273 / 280
页数:8
相关论文
共 12 条
[1]  
Einstein A., 1953, The Meaning of Relativity. Appendix II (Generalization of gravitation theory), P153
[2]  
Kolchin E.R., 1986, LECT NOTES MATH, V1185, P155
[3]  
Kondrateva M. V., 1999, Differential and Difference Dimension Polynomials
[4]   Reduced Grobner bases, free difference-differential modules and difference-differential dimension polynomials [J].
Levin, A .
JOURNAL OF SYMBOLIC COMPUTATION, 2000, 30 (04) :357-382
[5]  
Levin A. B., 2007, Grobner Bases in Symbolic Analysis, P43
[6]  
Levin A.B., 1995, CONTEMP MATH, V184, P275
[7]  
Levin A, 2014, LECT NOTES COMPUT SC, V8372, P146, DOI 10.1007/978-3-642-54479-8_7
[8]  
Levin A, 2008, ALGEBRA APPL, V8, P1
[9]   Grobner bases with respect to several orderings and multivariable dimension polynomials [J].
Levin, Alexander B. .
JOURNAL OF SYMBOLIC COMPUTATION, 2007, 42 (05) :561-578
[10]  
Morandi P., 1997, Field and Galois Theory, V167