Thermal infrared camera module for Satellite-Based Sea surface temperature monitoring in thin cirrus clouds areas

被引:0
作者
Faturachman, Danny [1 ]
Arifin, Bustanul [2 ]
Priyanto, Irwan [3 ,5 ]
Budiman, Adam Arif [4 ]
Afifa, Linda Nur [4 ]
Fauzi, Ahmad [2 ]
机构
[1] Darma Persada Univ, Dept Marine Engn, Jakarta, Indonesia
[2] Natl Res & Innovat Agcy BRIN, Directorate Evaluat Res Technol & Innovat Policy, Jakarta, Indonesia
[3] Natl Res & Inovat Agcy BRIN, Directorate Measurement & Indicators Res Technol &, Jakarta, Indonesia
[4] Darma Persada Univ, Dept Informat Technol, Jakarta, Indonesia
[5] Natl Res & Inovat Agcy BRIN, Res Ctr Oceanog, Jakarta, Indonesia
关键词
Sea surface temperature; Thermal infrared; Optical; Camera; Cirrus; Indonesia;
D O I
10.1016/j.asej.2025.103407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The development of a Thermal Infrared Camera Module designed for satellite-based Sea Surface Temperature (SST) monitoring addresses the critical challenges of SST monitoring in regions with frequent thin cirrus cloud cover, such as the Banda Sea and Arafura Sea. The design process included spectral range determination; optical performance analysis using Zemax; mechanical design using CAD; thermal and structural design using Thermal Desktop-SINDA/FLUINT; and complementation consisting of electronics and calibration. The results in figures and tables show that the module meets all technical criteria. The spectral range of 9.5-11.5 mu m allows the module to penetrate clouds, providing accurate SST data in tropical regions where existing systems such as MODIS and VIIRS have difficulty. The module offers a spatial resolution of 400 m, above the resolution of MODIS and VIIRS. These advantages make the camera module an effective tool for monitoring climate change, sustainable fisheries management, and marine ecosystem health.
引用
收藏
页数:11
相关论文
共 47 条
[11]  
Cullimore B, 2002, SAE Tech Pap, P10, DOI [10.4271/2002-01-2444, DOI 10.4271/2002-01-2444]
[12]  
Driggers Ronald G., 1998, Introduction to Infrared and Electro-Optical Systems
[13]  
Fan XW, 2019, INT GEOSCI REMOTE SE, P8177, DOI [10.1109/igarss.2019.8900653, 10.1109/IGARSS.2019.8900653]
[14]   A split-window method to retrieving sea surface temperature from landsat 8 thermal infrared remote sensing data in offshore waters [J].
Fu, Jiaoqi ;
Chen, Chao ;
Guo, Biyun ;
Chu, Yanli ;
Zheng, Hong .
ESTUARINE COASTAL AND SHELF SCIENCE, 2020, 236
[15]   Correction of Thin Cirrus Absorption Effects in Landsat 8 Thermal Infrared Sensor Images Using the Operational Land Imager Cirrus Band on the Same Satellite Platform [J].
Gao, Bo-Cai ;
Li, Rong-Rong ;
Yang, Yun ;
Anderson, Martha .
SENSORS, 2024, 24 (14)
[16]   Design of the SAC-D/NIRST camera module [J].
Gauvin, Jonny ;
Chateauneuf, Francois ;
Marchese, Linda ;
Cote, Patrice ;
Leclerc, Melanie ;
Chevalier, Claude ;
Marraco, Hugo ;
Phong, Linh Ngo .
INFRARED SPACEBORNE REMOTE SENSING AND INSTRUMENTATION XV, 2007, 6678
[17]  
Genesia Corp, 2013, Integrated Optical Design and Analysis
[18]  
Gerard D., 2007, Optomechanical Properties of Infrared Materials
[19]   Wien's Displacement Law and Blackbody Radiation Quartiles [J].
Gonzalez de Arrieta, I. .
PHYSICS TEACHER, 2021, 59 (06) :464-466
[20]  
Haj noor AYA, 2014, IOSR J Appl Phys, V6, P32, DOI [10.9790/4861-06533240, DOI 10.9790/4861-06533240]