A facile hydrothermal synthesis of MnCo2O4.5/MoS2 nanocomposite for supercapacitor

被引:0
作者
Balaji, N. Arun [1 ]
Ramya, K. C. [2 ]
Harikrishnan, S. [3 ]
机构
[1] New Prince Shri Bhavani Coll Engn & Technol, Dept Elect & Commun Engn, Chennai 600073, India
[2] Sri Krishna Coll Engn & Technol, Dept Elect & Elect Engn, Coimbatore 641008, India
[3] Kings Engn Coll, Dept Mech Engn, Chennai 602117, India
关键词
ELECTRODE MATERIALS; MOS2; GENERATION; NANOSHEETS; MECHANISM; GRAPHENE;
D O I
10.1007/s10854-025-15294-w
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To meet the growing need for better supercapacitor materials for a sustainable future, we created MnCo2O4.5/MoS2 nanocomposites using easy hydrothermal and solution mixing methods. Pristine MnCo2O4.5 exhibits uniform hexagonal platelet-like structures that are dispersed on thin MoS2 nanosheets, which facilitate short-ion diffusion pathways. MnCo2O4.5/MoS2 electrodes exhibit superior supercapacitive performances that possess a high specific capacitance of 672 F/g (0.25 A/g). After 5000 charge and discharge cycles at a current density of 5 A/g, the MnCo2O4.5/MoS2 nanocomposites showed a higher capacity retention of 81.6%. The positive synergistic effect and two-dimensional sheet-on-sheet nanocomposite structure of MnCo2O4.5/MoS2 resulted in improved supercapacitance properties compared to toMnCo2O4.5 nanoparticles. MoS2 nanosheets have several important functions: they provide surfaces for the spinel nanoparticles, help increase capacitance, and act as current collectors.
引用
收藏
页数:12
相关论文
共 55 条
[1]   Modeling and prediction of lattice parameters of binary spinel compounds (AM2X4) using support vector regression with Bayesian optimization [J].
Alade, Ibrahim Olanrewaju ;
Zhang, Yun ;
Xu, Xiaojie .
NEW JOURNAL OF CHEMISTRY, 2021, 45 (34) :15255-15266
[2]   Electrochemistry of Graphene and Related Materials [J].
Ambrosi, Adriano ;
Chua, Chun Kiang ;
Bonanni, Alessandra ;
Pumera, Martin .
CHEMICAL REVIEWS, 2014, 114 (14) :7150-7188
[3]   MnCo2O4 nanoneedles self-organized microstructures for supercapacitors [J].
Anjana, P. M. ;
Kumar, S. R. Sarath ;
Rakhi, R. B. .
MATERIALS TODAY COMMUNICATIONS, 2021, 28
[4]   CuO/MoS2 nanocomposites for rapid and high sensitive non-enzymatic glucose sensors [J].
Arunbalaji, S. ;
Vasudevan, R. ;
Arivanandhan, M. ;
Alsalme, A. ;
Alghamdi, A. ;
Jayavel, R. .
CERAMICS INTERNATIONAL, 2020, 46 (10) :16879-16885
[5]   Solvothermal synthesis of novel pod-like MnCo2O4.5 microstructures as high-performance electrode materials for supercapacitors [J].
Chen, Huiyu ;
Du, Xuming ;
Sun, Jiale ;
Wang, Ya ;
Zhang, Yanfei ;
Xu, Chunju .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (04) :3016-3027
[6]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
[7]   Two-dimensional transition metal dichalcogenide hybrid materials for energy applications [J].
Choudhary, Nitin ;
Islam, Md Ashraful ;
Kim, Jung Han ;
Ko, Tae-Jun ;
Schropp, Anthony ;
Hurtado, Luis ;
Weitzman, Dylan ;
Zhai, Lei ;
Jung, Yeonwoong .
NANO TODAY, 2018, 19 :16-40
[8]   Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors [J].
Dang, Yong-Qiang ;
Ren, Shao-Zhao ;
Liu, Guoyang ;
Cai, Jiangtao ;
Zhang, Yating ;
Qiu, Jieshan .
NANOMATERIALS, 2016, 6 (11)
[9]   CuO cauliflowers for supercapacitor application: Novel potentiodynamic deposition [J].
Dubal, Deepak P. ;
Gund, Girish S. ;
Lokhande, Chandrakant D. ;
Holze, Rudolf .
MATERIALS RESEARCH BULLETIN, 2013, 48 (02) :923-928
[10]   Supercapacitor electrodes from multiwalled carbon nanotubes [J].
Frackowiak, E ;
Metenier, K ;
Bertagna, V ;
Beguin, F .
APPLIED PHYSICS LETTERS, 2000, 77 (15) :2421-2423