Solving Non-Monotone Inclusions Using Monotonicity of Pairs of Operators

被引:0
作者
Le, Ba Khiet [1 ]
Dao, Minh N. [2 ]
Thera, Michel A. [3 ]
机构
[1] Ton Duc Thang Univ, Fac Math & Stat, Analyt & Algebra Methods Optimizat Res Grp, Ho Chi Minh City, Vietnam
[2] RMIT Univ, Sch Sci, Melbourne, Vic 3000, Australia
[3] Univ Limoges, XLIM UMR CNRS 7252, Limoges, France
基金
澳大利亚研究理事会;
关键词
Non-monotone inclusions; Monotonicity of pairs of operators; Nonconvex programming; Warped resolvents; Transformed resolvents; Proximal point algorithm; PROXIMAL POINT ALGORITHM; CONVERGENCE ANALYSIS; FIXED-POINTS; REGULARIZATION;
D O I
10.1007/s10957-025-02770-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, under the monotonicity of pairs of operators, we propose some generalized proximal point algorithms to solve non-monotone inclusions using warped and transformed resolvents. We establish weak, strong, and linear convergence of the proposed algorithms under mild conditions.
引用
收藏
页数:19
相关论文
共 27 条
[1]   State-Dependent Sweeping Processes: Asymptotic Behavior and Algorithmic Approaches [J].
Adly, Samir ;
Cojocaru, Monica G. ;
Le, Ba Khiet .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 202 (02) :932-948
[2]   The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems [J].
An, LTH ;
Tao, PD .
ANNALS OF OPERATIONS RESEARCH, 2005, 133 (1-4) :23-46
[3]  
[Anonymous], 2012, Optima
[4]   Accelerating the DC algorithm for smooth functions [J].
Aragon Artacho, Francisco J. ;
Fleming, Ronan M. T. ;
Vuong, Phan T. .
MATHEMATICAL PROGRAMMING, 2018, 169 (01) :95-118
[5]   Bregman monotone optimization algorithms [J].
Bauschke, HH ;
Borwein, JM ;
Combettes, PL .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (02) :596-636
[6]  
Bauschke HH., 2010, BIOMEDICAL MATH PROM, P57
[7]   Warped proximal iterations for monotone inclusions [J].
Bui, Minh N. ;
Combettes, Patrick L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
[8]  
Ge R., 2015, JMLR: Workshop and Conference Proceedings, V40, P1
[9]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&
[10]   Inexact variants of the proximal point algorithm without monotonicity [J].
Iusem, AN ;
Pennanen, T ;
Svaiter, BF .
SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (04) :1080-1097