AI, Optimization, and Human Values: Mapping the Intellectual Landscape of Industry 4.0 to 5.0

被引:0
作者
Rosario, Alberico Travassos [1 ,2 ]
Raimundo, Ricardo Jorge Gomes [3 ,4 ]
机构
[1] Inst Politecn Setubal, Escola Super Tecnol Setubal, Campus Inst Politecn Setubal,Edificio ESTS, P-2914504 Setubal, Portugal
[2] GOVCOPP Governance Competitiveness & Publ Pol, Campus Univ Santiago,Rua S Tiago DCSPT,Room 12-3-8, P-3810193 Aveiro, Portugal
[3] Univ Europeia, IADE Fac Design Tecnol & Comunicacao, P-1500210 Lisbon, Portugal
[4] ISEC Lisboa Inst Super Educ & Ciencias, P-1750142 Lisbon, Portugal
来源
APPLIED SCIENCES-BASEL | 2025年 / 15卷 / 13期
关键词
artificial intelligence; industry; 4.0; 5.0; smart manufacturing; ARTIFICIAL-INTELLIGENCE;
D O I
10.3390/app15137264
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study conducts a systematic bibliometric literature review to explore the conceptual and technological transition from Industry 4.0 to Industry 5.0, focusing on the roles of artificial intelligence (AI), optimization, and human values. Applying the PRISMA 2020 protocol, the analysis includes 53 peer-reviewed sources from the Scopus database, emphasizing the integration of advanced technologies such as cyber-physical systems, the Internet of Things, collaborative robotics, and explainable AI. While Industry 4.0 is marked by intelligent automation and digital connectivity, Industry 5.0 introduces a human-centric paradigm emphasizing sustainability, resilience, and co-creation. The findings underscore the significance of human-machine collaboration, process personalization, AI education, and ethical governance as foundational pillars of this new industrial era. This review highlights the emerging role of enabling technologies that reconcile technical performance with social and environmental values, promoting a more inclusive and sustainable model for industrial development.
引用
收藏
页数:22
相关论文
共 62 条
[1]   Artificial Neural Network Framework for Hybrid Control and Monitoring in Turning Operations [J].
Abaza, Bogdan Felician ;
Gheorghita, Vlad .
APPLIED SCIENCES-BASEL, 2025, 15 (07)
[2]  
Agote-Garrido A., 2024, Resilience as a Driver of Industrial Manufacturing Systems, DOI [10.3233/ATDE241264, DOI 10.3233/ATDE241264]
[3]   State of Industry 5.0-Analysis and Identification of Current Research Trends [J].
Akundi, Aditya ;
Euresti, Daniel ;
Luna, Sergio ;
Ankobiah, Wilma ;
Lopes, Amit ;
Edinbarough, Immanuel .
APPLIED SYSTEM INNOVATION, 2022, 5 (01)
[4]  
Alimam H., 2023, P 2023 IEEE SMARTWO
[5]  
Bac T.P., 2023, Springer Series in Reliability Engineering, VVolume Part F4, P199, DOI [10.1007/978-3-031-30510-8_10, DOI 10.1007/978-3-031-30510-8_10]
[6]   Toward a Human-Cyber-Physical System for Real-Time Anomaly Detection [J].
Bajic, Bojana ;
Rikalovic, Aleksandar ;
Suzic, Nikola ;
Piuri, Vincenzo .
IEEE SYSTEMS JOURNAL, 2024, 18 (02) :1308-1319
[7]   Toward human-centered intelligent assistance system in manufacturing: challenges and potentials for operator 5.0 [J].
Bechinie, Christian ;
Zafari, Setareh ;
Kroeninger, Lukas ;
Puthenkalam, Jaison ;
Tscheligi, Manfred .
5TH INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, ISM 2023, 2024, 232 :1584-1596
[8]   AI's effect on innovation capacity in the context of industry 5.0: a scoping review [J].
Becue, Adrien ;
Gama, Joao ;
Brito, Pedro Quelhas .
ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (08)
[9]   Towards Human Digital Twins to enhance workers' safety and production system resilience [J].
Berti, Nicola ;
Finco, Serena ;
Guidolin, Mattia ;
Battini, Daria .
IFAC PAPERSONLINE, 2023, 56 (02) :11062-11067
[10]   Accelerating Industry 4.0 and 5.0: The Potential of Generative Artificial Intelligence [J].
Boareto, Pedro Antonio ;
Szejka, Anderson Luis ;
Rocha Loures, Eduardo Freitas ;
Deschamps, Fernando ;
Portela Santos, Eduardo Alves .
INNOVATIVE INTELLIGENT INDUSTRIAL PRODUCTION AND LOGISTICS, IN4PL 2024, PT I, 2025, 2372 :456-472