Generalizing blocking semiovals in finite projective planes

被引:0
作者
Crupi, Marilena [1 ]
Ficarra, Antonino [2 ,3 ]
机构
[1] Univ Messina, Dept Math & Comp Sci Phys & Earth Sci, Viale Ferdinando Stagno dAlcontres 31, I-98166 Messina, Italy
[2] BCAM Basque Ctr Appl Math, Mazarredo 14, Bilbao 48009, Basque Country, Spain
[3] Basque Fdn Sci, Ikerbasque, Plaza Euskadi 5, Bilbao 48009, Basque Country, Spain
关键词
Projective planes; Blocking sets; Ovals; Blocking sets with the r infinity-property; PG(2; NUMBER; SETS;
D O I
10.1016/j.ffa.2025.102688
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Blocking semiovals and the determination of their (minimum) sizes constitute one of the central research topics in finite projective geometry. In this article we introduce the concept of blocking set with the r infinity-property in a finite projective plane PG(2, q), with r infinity a line of PG(2, q) and q a prime power. This notion greatly generalizes that of blocking semioval. We address the question of determining those integers k for which there exists a blocking set of size k with the r infinity-property. To solve this problem, we build new theory which deeply analyzes the interplay between blocking sets in finite projective and affine planes. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:16
相关论文
共 26 条
[1]   Blocking semiovals in PG(2, q2), q odd, admitting PGL(2, q) as an automorphism group [J].
Bartoli, Daniele ;
Pavese, Francesco .
FINITE FIELDS AND THEIR APPLICATIONS, 2018, 54 :315-334
[2]  
Bartoli D, 2014, ARS COMBINATORIA, V117, P435
[3]  
Batten L.M., 2000, Australas. J. Comb., V22, P167
[4]   Blocking semiovals of type (1, M+1, N+1) [J].
Batten, LM ;
Dover, JM .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2001, 14 (04) :446-457
[5]   Classification of minimal blocking sets in PG(2,9) [J].
Botteldoorn, Arne ;
Coolsaet, Kris ;
Fack, Veerle .
JOURNAL OF GEOMETRY, 2024, 115 (01)
[6]   BLOCKING NUMBER OF AN AFFINE SPACE [J].
BROUWER, AE ;
SCHRIJVER, A .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (02) :251-253
[7]   BLOCKING SETS IN FINITE PROJECTIVE PLANES [J].
BRUEN, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 21 (03) :380-&
[8]  
Buekenhout F., 1976, Atti dei Convegni Lincei, V17, P393
[9]  
Dover J.M., 2000, J. Geom., V69, P58
[10]   On the minimum blocking semioval in PG(2, 11) [J].
Dover, Jeremy M. .
JOURNAL OF GEOMETRY, 2023, 114 (02)