Bifunctional electrocatalysts for Zn-air batteries: A comprehensive review of design optimization and in-situ characterization

被引:0
作者
Gautam, Jagadis [1 ]
Mahajan, Roop L. [2 ,3 ]
Lee, Seul-Yi [1 ]
Park, Soo-Jin [1 ]
机构
[1] Kyung Hee Univ, Coll Engn, Dept Mech Engn, Yongin 17104, South Korea
[2] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA
[3] Virginia Tech, Inst Crit Technol & Appl Sci, Blacksburg, VA 24061 USA
基金
新加坡国家研究基金会;
关键词
Zinc-air battery; Electrocatalysts; Air cathode; Oxygen reduction reaction; Oxygen evolution reaction; OXYGEN REDUCTION; STABLE ELECTROCATALYST; EFFICIENT; NANOPARTICLES; CATALYSTS; SURFACE; OXIDE; NANOSHEETS; ELECTRODE; EVOLUTION;
D O I
10.1016/j.mser.2025.101058
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rechargeable Zinc-Air Batteries (ZABs) stand out for their superior energy density, safety, cost-effectiveness, and environmental sustainability, making them a promising energy storage solution. Their performance depends on the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air electrode but is hindered by sluggish kinetics, limited bifunctionality, precious metal dependence, and corrosion. This review explores cutting-edge bifunctional electrocatalysts, focusing on strategies that enhance ORR and OER activity. It critically examines ZAB fundamentals, reaction mechanisms, and innovations in catalyst design-optimizing micro/nanoarchitectures, electronic structures, binding energies, and surface properties to improve activity, selectivity, and durability. A detailed analysis of electronic, geometric, and synergistic effects at a microscopic scale sheds light on catalytic performance enhancement. In situ characterization techniques are emphasized to unravel electrode-electrolyte interfacial dynamics, surface reconstruction, and mechanistic pathways. Finally, key challenges and future research directions are outlined, driving the next generation of high-performance ZABs.
引用
收藏
页数:41
相关论文
共 268 条
[1]   Highly accessible dual-metal atomic pairs for enhancing oxygen redox reaction in zinc-air batteries [J].
Ao, Xiang ;
Li, Linfeng ;
Yun, So Yeon ;
Deng, Yong ;
Yoon, Woosik ;
Wang, Peixing ;
Jin, Xiaoyan ;
Dai, Liming ;
Wang, Chundong ;
Hwang, Seong-Ju .
NANO ENERGY, 2023, 118
[2]   Recent progress on single-atom catalysts for lithium-air battery applications [J].
Bai, Tiansheng ;
Li, Deping ;
Xiao, Shenyi ;
Ji, Fengjun ;
Zhang, Shuai ;
Wang, Chu ;
Lu, Jingyu ;
Gao, Quan ;
Ci, Lijie .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (04) :1431-1465
[3]   Electronic coupling coordinated vanadium nitride/magnesium oxide hetero-junction for accelerating oxygen reaction and long-life flexible zinc-air batteries [J].
Balaji, Ravichandran ;
Nguyen, Thanh Tuan ;
Austeria, Muthu P. ;
Kim, Do Hwan ;
Lee, Joong Hee ;
Kim, Nam Hoon .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 335
[4]   Electrocatalysts for Zinc-Air Batteries Featuring Single Molybdenum Atoms in a Nitrogen-Doped Carbon Framework [J].
Balamurugan, Jayaraman ;
Austeria, P. Muthu ;
Kim, Jun Beom ;
Jeong, Eun-Suk ;
Huang, Hsin-Hui ;
Kim, Do Hwan ;
Koratkar, Nikhil ;
Kim, Sang Ouk .
ADVANCED MATERIALS, 2023, 35 (35)
[5]   Synergistic Effects of Phase Transition and Electron-Spin Regulation on the Electrocatalysis Performance of Ternary Nitride [J].
Ban, Jinjin ;
Xu, Hongjie ;
Cao, Guoqin ;
Fan, Yameng ;
Pang, Wei Kong ;
Shao, Guosheng ;
Hu, Junhua .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (25)
[6]   Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport [J].
Barry, Edward ;
Burns, Raelyn ;
Chen, Wei ;
De Hoe, Guilhem X. ;
De Oca, Joan Manuel Montes ;
de Pablo, Juan J. ;
Dombrowski, James ;
Elam, Jeffrey W. ;
Felts, Alanna M. ;
Galli, Giulia ;
Hack, John ;
He, Qiming ;
He, Xiang ;
Hoenig, Eli ;
Iscen, Aysenur ;
Kash, Benjamin ;
Kung, Harold H. ;
Lewis, Nicholas H. C. ;
Liu, Chong ;
Ma, Xinyou ;
Mane, Anil ;
Martinson, Alex B. F. ;
Mulfort, Karen L. ;
Murphy, Julia ;
Molhave, Kristian ;
Nealey, Paul ;
Qiao, Yijun ;
Rozyyev, Vepa ;
Schatz, George C. ;
Sibener, Steven J. ;
Talapin, Dmitri ;
Tiede, David M. ;
Tirrell, Matthew, V ;
Tokmakoff, Andrei ;
Voth, Gregory A. ;
Wang, Zhongyang ;
Ye, Zifan ;
Yesibolati, Murat ;
Zaluzec, Nestor J. ;
Darling, Seth B. .
CHEMICAL REVIEWS, 2021, 121 (15) :9450-9501
[7]   Tuning NiCo2O4 bifunctionality with nitrogen-doped graphene nanoribbons in oxygen electrocatalysis for zinc-air battery application [J].
Bezerra, Leticia S. ;
Mooste, Marek ;
Fortunato, Guilherme V. ;
Cardoso, Eduardo S. F. ;
Lanza, Marcos R. V. ;
Tammeveski, Kaido ;
Maia, Gilberto .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 928
[8]   Oxygen Deficient LaMn0.75Co0.25O3-δ Nanofibers as an Efficient Electrocatalyst for Oxygen Evolution Reaction and Zinc-Air Batteries [J].
Bian, Juanjuan ;
Li, Zhipeng ;
Li, Nianwu ;
Sun, Chunwen .
INORGANIC CHEMISTRY, 2019, 58 (12) :8208-8214
[9]   Nitrogen-Doped NiCo2O4 Microsphere as an Efficient Catalyst for Flexible Rechargeable Zinc-Air Batteries and Self-Charging Power System [J].
Bian, Juanjuan ;
Cheng, Xiaopeng ;
Meng, Xiaoyi ;
Wang, Jian ;
Zhou, Jigang ;
Li, Shaoqing ;
Zhang, Yuefei ;
Sun, Chunwen .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (03) :2296-2304
[10]   Innovative zinc-based batteries [J].
Borchers, Niklas ;
Clark, Simon ;
Horstmann, Birger ;
Jayasayee, Kaushik ;
Juel, Mari ;
Stevens, Philippe .
JOURNAL OF POWER SOURCES, 2021, 484