Theoretical modelling of magnetic and magnetocaloric properties in rare-earth high-entropy compounds: Insights from Gd0.2Tb0.2Dy0.2Ho0.2Er0.2Al2

被引:0
作者
de Oliveira, R. S. [1 ]
Carvalho, A. M. G. [2 ,3 ,4 ]
de Sousa, V. S. R. [2 ]
Nobrega, E. P. [2 ]
dos Santos Jr, S. S. [2 ]
von Ranke, P. J. [2 ]
Ribeiro, P. O. [2 ]
Alho, B. P. [2 ]
机构
[1] Univ Estado Rio de Janeiro UERJ, Inst Matemat & Estat, BR-20550013 Rio De Janeiro, RJ, Brazil
[2] Univ Estado Rio de Janeiro UERJ, Inst Fis Armando Dias Tavares, BR-20550013 Rio De Janeiro, RJ, Brazil
[3] Univ Fed Sao Paulo, Dept Engn Quim, BR-09913030 Diadema, SP, Brazil
[4] Univ Estadual Maringa, Dept Engn Mecan, BR-87020900 Maringa, PR, Brazil
关键词
Magnetocaloric effect; High-entropy compounds; High-entropy alloys; Mean field magnetic model; Magnetic refrigeration;
D O I
10.1016/j.jallcom.2025.181775
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, we investigate the magnetic and magnetocaloric properties of the high-entropy compound (HECs) Gd0.2Tb0.2Dy0.2Ho0.2Er0.2Al2, focusing on the complex interactions between rare-earth sublattices. Our multisublattice Hamiltonian model considers crystalline electric field interactions, Zeeman effect for the five rareearth sublattices and the exchange interaction among combinations of rare-earth ions. Intra-and intersublattice exchange interactions were adjusted based on parent RAl2 compounds and pseudo-binary R1-xR'xAl2 (with R and R' corresponding to rare-earth elements) materials to match the Curie temperature and magneto-caloric behavior. Our theoretical model shows good agreement with experimental data. The easy magnetization direction was determined to be along the (111) axis. We also compared the magnetocaloric performance of the HECs with simulated composites. This study suggests that HECs based on RAl2 compounds have potential for optimizing magnetocaloric behavior, particularly in low-temperature cooling applications.
引用
收藏
页数:5
相关论文
共 29 条
[1]   Magnetocaloric effect in Gd(1-y)DyyAl2 [J].
Alho, B. P. ;
Ribeiro, P. O. ;
Alvarenga, T. S. T. ;
Carvalho, A. Magnus G. ;
Von Ranke, P. J. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2014, 37 :297-302
[2]   MAGNETIC HEAT PUMPING NEAR ROOM-TEMPERATURE [J].
BROWN, GV .
JOURNAL OF APPLIED PHYSICS, 1976, 47 (08) :3673-3680
[3]  
Buschow K. H. J., 2003, Physics of Magnetism and Magnetic Materials, DOI [10.1007/b100503, DOI 10.1007/B100503]
[4]   Theoretical aspects of the magnetocaloric effect [J].
de Oliveira, N. A. ;
von Ranke, P. J. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2010, 489 (4-5) :89-159
[5]   Study on the magnetothermal properties of the Dy1_xTbxAl2 series of compounds [J].
de Oliveira, R. S. ;
Ribeiro, P. O. ;
Nobrega, E. P. ;
de Sousa, V. S. R. ;
Clemente, P. C. M. ;
von Ranke, P. J. ;
Khan, M. ;
Pathak, A. K. ;
Mudryk, Y. ;
Alho, B. P. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2024, 609
[6]   Material-based figure of merit for caloric materials [J].
Griffith, L. D. ;
Mudryk, Y. ;
Slaughter, J. ;
Pecharsky, V. K. .
JOURNAL OF APPLIED PHYSICS, 2018, 123 (03)
[7]   Magnetocaloric materials [J].
Gschneidner, KA ;
Pecharsky, VK .
ANNUAL REVIEW OF MATERIALS SCIENCE, 2000, 30 :387-429
[8]  
Hutchings M., 1964, Point-Charge Calculations of Energy Levels of Magnetic Ions in Crystalline Electric Fields, P227
[9]   Estimation of magnetocaloric effect in multicomponent material Gd0.2Tb0.2Dy0.2Ho0.2Er0.2Ni2: Exploring high-entropy design [J].
Jesla, P. K. ;
Chelvane, J. Arout ;
Nirmala, R. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2024, 590
[10]   Magnetic and Transport Properties of Multicomponent Laves Phase Intermetallic Compound Gd0.2Tb0.2Dy0.2Ho0.2Er0.2Al2 [J].
Jesla, P. K. ;
Chelvane, J. Arout ;
Morozkin, A., V ;
Nigam, A. K. ;
Nirmala, R. .
IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (02)