Sensitivity of Antarctic Bottom Water Formation and Export to Horizontal Model Resolution

被引:1
作者
Schmidt, Christina [1 ,2 ,3 ]
Morrison, Adele K. [4 ,5 ]
England, Matthew H. [2 ,6 ]
Aguiar, Wilton [4 ,5 ]
Gibson, Angus H. [4 ]
机构
[1] Univ New South Wales, Climate Change Res Ctr, Sydney, NSW, Australia
[2] Univ New South Wales, Australian Ctr Excellence Antarctic Sci, Sydney, NSW, Australia
[3] Univ New South Wales, ARC Ctr Excellence Climate Extremes, Sydney, NSW, Australia
[4] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT, Australia
[5] Australian Natl Univ, Australian Ctr Excellence Antarctic Sci, Canberra, ACT, Australia
[6] Univ New South Wales, Ctr Marine Sci & Innovat, Sydney, NSW, Australia
关键词
Antarctic bottom water; ocean-sea ice modeling; dense water formation; overflows; water masses; model resolution; SEA-ICE; Z-COORDINATE; OCEAN; CIRCULATION; ABYSSAL; DRIVEN; HEAT; RESTRATIFICATION; MESOSCALE; SURFACE;
D O I
10.1029/2024MS004621
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The formation of Antarctic Bottom Water (AABW) is a key process in the global ocean circulation, but modeling the formation and downslope flow of AABW represents an ongoing challenge for ocean and climate models due to the high horizontal resolution required. Here, we assess the formation and export of AABW to the abyss and its sensitivity to horizontal model resolution in a circumpolar ocean-sea ice model available at horizontal resolutions of 1/10 degrees, 1/20 degrees, and 1/40 degrees. The formation of Dense Shelf Water (DSW), the precursor of AABW, reduces with increasing model resolution in most formation regions due to shelf freshening. Increased eddy activity with higher model resolution flattens the isopycnals in the open Southern Ocean and enables access of lighter, fresher waters onto the continental shelf. Despite the decrease in DSW formation, the total offshore AABW transport increases with increasing model resolution, especially across the 2,500 m isobath, due to less diapycnal mixing during the downslope flow. This resolution dependency is strongest in the Ross and Weddell Seas, the two most important regions of AABW formation. We conclude that a horizontal resolution of 1/10 degrees is sufficient to simulate AABW export from East Antarctica, in agreement with theory of the downslope flow of dense plumes, but finer resolutions of up to 1/40 degrees increase the offshore transport and may be required to resolve the AABW export in the Weddell and Ross Seas.
引用
收藏
页数:19
相关论文
共 65 条
[1]  
Abernathey RP, 2016, NAT GEOSCI, V9, P596, DOI [10.1038/NGEO2749, 10.1038/ngeo2749]
[2]   The GFDL Global Ocean and Sea Ice Model OM4.0: Model Description and Simulation Features [J].
Adcroft, Alistair ;
Anderson, Whit ;
Balaji, V. ;
Blanton, Chris ;
Bushuk, Mitchell ;
Dufour, Carolina O. ;
Dunne, John P. ;
Griffies, Stephen M. ;
Hallberg, Robert ;
Harrison, Matthew J. ;
Held, Isaac M. ;
Jansen, Malte F. ;
John, Jasmin G. ;
Krasting, John P. ;
Langenhorst, Amy R. ;
Legg, Sonya ;
Liang, Zhi ;
McHugh, Colleen ;
Radhakrishnan, Aparna ;
Reichl, Brandon G. ;
Rosati, Tony ;
Samuels, Bonita L. ;
Shao, Andrew ;
Stouffer, Ronald ;
Winton, Michael ;
Wittenberg, Andrew T. ;
Xiang, Baoqiang ;
Zadeh, Niki ;
Zhang, Rong .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (10) :3167-3211
[3]   Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves [J].
Adusumilli, Susheel ;
Fricker, Helen Amanda ;
Medley, Brooke ;
Padman, Laurie ;
Siegfried, Matthew R. .
NATURE GEOSCIENCE, 2020, 13 (09) :616-+
[4]   Ventilation of the abyss in the Atlantic sector of the Southern Ocean [J].
Akhoudas, Camille Hayatte ;
Sallee, Jean-Baptiste ;
Haumann, F. Alexander ;
Meredith, Michael P. ;
Garabato, Alberto Naveira ;
Reverdin, Gilles ;
Jullion, Loic ;
Aloisi, Giovanni ;
Benetti, Marion ;
Leng, Melanie J. ;
Arrowsmith, Carol .
SCIENTIFIC REPORTS, 2021, 11 (01)
[5]  
[Anonymous], 2014, The GEBCO_2014 Grid
[6]   Representation of Southern Ocean Properties across Coupled Model Intercomparison Project Generations: CMIP3 to CMIP6 [J].
Beadling, R. L. ;
Russell, J. L. ;
Stouffer, R. J. ;
Mazloff, M. ;
Talley, L. D. ;
Goodman, P. J. ;
Sallee, J. B. ;
Hewitt, H. T. ;
Hyder, P. ;
Pandde, Amarjiit .
JOURNAL OF CLIMATE, 2020, 33 (15) :6555-6581
[7]   Mixed layer formation and restratification in presence of mesoscale and submesoscale turbulence [J].
Couvelard, X. ;
Dumas, F. ;
Garnier, V. ;
Ponte, A. L. ;
Talandier, C. ;
Treguier, A. M. .
OCEAN MODELLING, 2015, 96 :243-253
[8]   The Community Earth System Model Version 2 (CESM2) [J].
Danabasoglu, G. ;
Lamarque, J. -F. ;
Bacmeister, J. ;
Bailey, D. A. ;
DuVivier, A. K. ;
Edwards, J. ;
Emmons, L. K. ;
Fasullo, J. ;
Garcia, R. ;
Gettelman, A. ;
Hannay, C. ;
Holland, M. M. ;
Large, W. G. ;
Lauritzen, P. H. ;
Lawrence, D. M. ;
Lenaerts, J. T. M. ;
Lindsay, K. ;
Lipscomb, W. H. ;
Mills, M. J. ;
Neale, R. ;
Oleson, K. W. ;
Otto-Bliesner, B. ;
Phillips, A. S. ;
Sacks, W. ;
Tilmes, S. ;
Van Kampenhout, L. ;
Vertenstein, M. ;
Bertini, A. ;
Dennis, J. ;
Deser, C. ;
Fischer, C. ;
Fox-Kemper, B. ;
Kay, J. E. ;
Kinnison, D. ;
Kushner, P. J. ;
Larson, V. E. ;
Long, M. C. ;
Mickelson, S. ;
Moore, J. K. ;
Nienhouse, E. ;
Polvani, L. ;
Rasch, P. J. ;
Strand, W. G. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (02)
[9]   The Finite-volumE Sea ice-Ocean Model (FESOM2) [J].
Danilov, Sergey ;
Sidorenko, Dmitry ;
Wang, Qiang ;
Jung, Thomas .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (02) :765-789
[10]   Annual mass budget of Antarctic ice shelves from 1997 to 2021 [J].
Davison, Benjamin J. ;
Hogg, Anna E. ;
Gourmelen, Noel ;
Jakob, Livia ;
Wuite, Jan ;
Nagler, Thomas ;
Greene, Chad A. ;
Andreasen, Julia ;
Engdahl, Marcus E. .
SCIENCE ADVANCES, 2023, 9 (41)