Machine learning-powered multi-omics for food microbiology and smarter food safety

被引:0
作者
Bansal, Sherry [1 ]
Rodriguez, Catarina Z. [1 ]
Thompson-Witrick, Katherine A. [1 ]
Wang, Yu [1 ,2 ]
Taft, Diana H. [1 ]
Zhang, Boce [1 ]
机构
[1] Univ Florida, Food Sci & Human Nutr Dept, Gainesville, FL 32611 USA
[2] Univ Florida, Citrus Res & Educ Ctr, Lake Alfred, FL 33850 USA
基金
美国农业部;
关键词
Machine learning; Multi-omics; Omics; Food safety; Food microbiology; INTEGRATED ANALYSIS; R PACKAGE; PATHOGENS; GENOMICS; METABOLOMICS; PROTEOMICS;
D O I
10.1016/j.tifs.2025.105145
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Innovations in high-throughput omics technologies have not only expanded the capabilities of individual omics platforms but have also catalyzed a shift toward multi-omics integration, enabling a more holistic understanding of microbial dynamics in food safety context. By combining data from various omics layers, researchers can elucidate complex biological pathways of microbial interactions with foods, uncover mechanisms underlying foodborne hazards, and identify predictive biomarkers. These insights, powered by diverse machine learning (ML) algorithms, support the development of smarter food safety interventions. However, challenges related to data quality, standardization, and integration tools still limit the full potential of multi-omics approaches. Despite these obstacles, ongoing advances are steadily enhancing the feasibility and accessibility of multi-omics integration. This progress is reflected in the growing number of food safety studies leveraging novel and innovative ML models to extract actionable biological insights. This review explores the synergistic convergence of multi-omics and ML, highlighting current applications, such as pattern detection, traceability, antimicrobial resistance profiling, and underscores its transformative potential in the future of food safety and microbiology.
引用
收藏
页数:16
相关论文
共 190 条
[1]   A machine learning and deep learning-based integrated multi-omics technique for leukemia prediction [J].
Abbasi, Erum Yousef ;
Deng, Zhongliang ;
Ali, Qasim ;
Khan, Adil ;
Shaikh, Asadullah ;
Al Reshan, Mana Saleh ;
Sulaiman, Adel ;
Alshahrani, Hani .
HELIYON, 2024, 10 (03)
[2]   Accurate structure prediction of biomolecular interactions with AlphaFold 3 [J].
Abramson, Josh ;
Adler, Jonas ;
Dunger, Jack ;
Evans, Richard ;
Green, Tim ;
Pritzel, Alexander ;
Ronneberger, Olaf ;
Willmore, Lindsay ;
Ballard, Andrew J. ;
Bambrick, Joshua ;
Bodenstein, Sebastian W. ;
Evans, David A. ;
Hung, Chia-Chun ;
O'Neill, Michael ;
Reiman, David ;
Tunyasuvunakool, Kathryn ;
Wu, Zachary ;
Zemgulyte, Akvile ;
Arvaniti, Eirini ;
Beattie, Charles ;
Bertolli, Ottavia ;
Bridgland, Alex ;
Cherepanov, Alexey ;
Congreve, Miles ;
Cowen-Rivers, Alexander I. ;
Cowie, Andrew ;
Figurnov, Michael ;
Fuchs, Fabian B. ;
Gladman, Hannah ;
Jain, Rishub ;
Khan, Yousuf A. ;
Low, Caroline M. R. ;
Perlin, Kuba ;
Potapenko, Anna ;
Savy, Pascal ;
Singh, Sukhdeep ;
Stecula, Adrian ;
Thillaisundaram, Ashok ;
Tong, Catherine ;
Yakneen, Sergei ;
Zhong, Ellen D. ;
Zielinski, Michal ;
Zidek, Augustin ;
Bapst, Victor ;
Kohli, Pushmeet ;
Jaderberg, Max ;
Hassabis, Demis ;
Jumper, John M. .
NATURE, 2024, 630 (8016) :493-500
[3]   Biomarkers associated with cheese quality uncovered by integrative multi-omic analysis [J].
Afshari, Roya ;
Pillidge, Christopher J. ;
Dias, Daniel A. ;
Osborn, A. Mark ;
Gill, Harsharn .
FOOD CONTROL, 2021, 123
[4]   Proteomics as a promising biomarker in food authentication, quality and safety: A review [J].
Afzaal, Muhammad ;
Saeed, Farhan ;
Hussain, Muzzamal ;
Shahid, Farheen ;
Siddeeg, Azhari ;
Al-Farga, Ammar .
FOOD SCIENCE & NUTRITION, 2022, 10 (07) :2333-2346
[5]   Machine learning approach yields epigenetic biomarkers of food allergy: A novel 13-gene signature to diagnose clinical reactivity [J].
Alag, Ayush .
PLOS ONE, 2019, 14 (06)
[6]   Genomics of foodborne pathogens for microbial food safety [J].
Allard, Marc W. ;
Bell, Rebecca ;
Ferreira, Christina M. ;
Gonzalez-Escalona, Narjol ;
Hoffmann, Maria ;
Muruvanda, Tim ;
Ottesen, Andrea ;
Ramachandran, Padmini ;
Reed, Elizabeth ;
Sharma, Shashi ;
Stevens, Eric ;
Timme, Ruth ;
Zheng, Jie ;
Brown, Eric W. .
CURRENT OPINION IN BIOTECHNOLOGY, 2018, 49 :224-229
[7]   Challenges and opportunities related to the use of innovative modelling approaches and tools for microbiological food safety management [J].
Allende, Ana ;
Bover-Cid, Sara ;
Fernandez, Pablo S. .
CURRENT OPINION IN FOOD SCIENCE, 2022, 45
[8]  
Amore A., 2023, Frontiers in Industrial Microbiology, V1, DOI [10.3389/finmi.2023.1255505, DOI 10.3389/FINMI.2023.1255505]
[9]   Multiplex methods provide effective integration of multi-omic data in genome-scale models [J].
Angione, Claudio ;
Conway, Max ;
Lio, Pietro .
BMC BIOINFORMATICS, 2016, 17
[10]  
Antonelli J., 2019, METABOLITES, V9, P143, DOI [DOI 10.3390/metabo9070143, 10.3390/metabo9070143]