Ramsey and Gallai-Ramsey numbers for multiple triangles of graphs and their multiplicities

被引:0
作者
Yao, Yifan [1 ]
Huang, Zhong [2 ]
Mao, Yaping [1 ,3 ]
Zhou, Jiannan [1 ]
机构
[1] Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
[2] Yangtze Univ, Sch Informat & Math, Jingzhou 434023, Peoples R China
[3] Qinghai Normal Univ, Acad Plateau Sci & Sustainabil, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Ramsey theory; Ramsey number; Gallai-Ramsey number; Ramsey multiplicity;
D O I
10.1016/j.dam.2025.06.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given two graphs G and H, the k-edge-colored Gallai-Ramsey number grk(G : H) is defined to be minimum integer n such that every k-edge-coloring of the complete graph Kn contains either a rainbow copy of G or a monochromatic copy of H. The Gallai-Ramsey multiplicity GMk(G, H) is defined as the minimum total number of rainbow copy of G and monochromatic copy of H in any exact k-edge-coloring of Kgrk(G,H). In this paper, we determine the exact values of Gallai-Ramsey number grk(G : H) and Ramsey numbers R2(H), where H denotes the union of matchings and triangles, and G denotes a 3-star or a 4-path. We give the exact values for Ramsey multiplicity involving multiple matchings and triangle, and get the upper and lower bounds for Gallai-Ramsey multiplicity involving some small rainbow subgraphs. (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:195 / 203
页数:9
相关论文
共 25 条
[1]   RAMSEY THEOREMS FOR MULTIPLE COPIES OF GRAPHS [J].
BURR, SA ;
ERDOS, P ;
SPENCER, JH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 209 (AUG) :87-99
[2]   ON THE RAMSEY MULTIPLICITIES OF GRAPHS - PROBLEMS AND RECENT RESULTS [J].
BURR, SA ;
ROSTA, V .
JOURNAL OF GRAPH THEORY, 1980, 4 (04) :347-361
[3]  
Cameron K, 1997, J GRAPH THEOR, V26, P9, DOI 10.1002/(SICI)1097-0118(199709)26:1<9::AID-JGT2>3.0.CO
[4]  
2-N
[5]   Euclidean Gallai-Ramsey for Various Configurations [J].
Cheng, Xinbu ;
Xu, Zixiang .
DISCRETE & COMPUTATIONAL GEOMETRY, 2025, 73 (04) :1037-1052
[6]   RAMSEY PROBLEM ON MULTIPLICITIES OF COMPLETE SUBGRAPHS IN NEARLY QUASI-RANDOM GRAPHS [J].
FRANEK, F ;
RODL, V .
GRAPHS AND COMBINATORICS, 1992, 8 (04) :299-308
[7]   TRANSITIV ORIENTIERBARE GRAPHEN [J].
GALLAI, T .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1967, 18 (1-2) :25-&
[8]  
GOODMAN AW, 1959, AM MATH MONTHLY, V66, P778
[9]   Edge colorings of complete graphs without tricolored triangles [J].
Gyárfás, A ;
Simonyi, G .
JOURNAL OF GRAPH THEORY, 2004, 46 (03) :211-216
[10]  
HARARY F, 1974, NETWORKS, V4, P163, DOI DOI 10.1002/NET.3230040206