Soil-structure interaction (SSI) may lead to reduction, amplification or negligible change in structural responses depending on the relationship between the nature of excitations and subsoil conditions. Since neglecting SSI effects may cause uncertainties in seismic design, it is crucial to consider them during the design process. Another important factor affecting the dynamic behavior of structures interacting with the ground is the dynamic properties of the structures. To consider this effect, three buildings with 4, 8, and 12 stories designed in accordance with the Turkish Building Earthquake Code (TBEC-2018) are analyzed. The aspect ratios of these structures are 2, 4, and 6, corresponding to squat, ordinary, and slender structures, respectively. The primary objective of this study is to simulate the combined effects of these key parameters on the dynamic response of reinforced concrete structures. In the time history analyses, six ground motions classified by three different frequency contents are considered. 3D finite element models of SSI systems are established using ANSYS software. The usability of the numerical models is demonstrated for both SSI and fixed-base cases through three different analytical approaches. The displacement, acceleration, and stress responses are examined through time history analyses. The results indicate that the SSI is not negligible and neglecting the SSI is an oversimplification that does not lead to always-conservative predictions. Moreover, both the frequency content of the excitation and the structural aspect ratio are found to be decisive parameters in seismic response.