MSRGAN: A Multi-Scale Residual GAN for High-Resolution Precipitation Downscaling

被引:0
作者
Liu, Yida [1 ]
Li, Zhuang [2 ]
Cao, Guangzhen [3 ,4 ]
Wang, Qiong [1 ]
Li, Yizhe [5 ]
Lu, Zhenyu [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Nanjing Univ Informat Sci Technol, Sch Elect & Informat Engn, Nanjing 210044, Peoples R China
[3] China Meteorol Adm, Natl Satellite Meteorol Ctr, Natl Ctr Space Weather, Key Lab Radiometr Calibrat & Validat Environm Sate, Beijing 100081, Peoples R China
[4] Innovat Ctr FengYun Meteorol Satellite FYSIC, Beijing 100081, Peoples R China
[5] Nanjing Univ Informat Sci & Technol, Sch Artificial Intelligence, Nanjing 210044, Peoples R China
关键词
precipitation downscaling; generative adversarial network; multi-scale features; high-resolution reconstruction; deep learning; extreme precipitation detection; MODEL; CLIMATE;
D O I
10.3390/rs17132281
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To address the challenge of insufficient spatial resolution in remote sensing precipitation data, this paper proposes a novel Multi-Scale Residual Generative Adversarial Network (MSRGAN) for reconstructing high-resolution precipitation images. The model integrates multi-source meteorological information and topographic priors, and it employs a Deep Multi-Scale Perception Module (DeepInception), a Multi-Scale Feature Modulation Module (MSFM), and a Spatial-Channel Attention Network (SCAN) to achieve high-fidelity restoration of complex precipitation structures. Experiments conducted using Weather Research and Forecasting (WRF) simulation data over the continental United States demonstrate that MSRGAN outperforms traditional interpolation methods and state-of-the-art deep learning models across various metrics, including Critical Success Index (CSI), Heidke Skill Score (HSS), False Alarm Rate (FAR), and Jensen-Shannon divergence. Notably, it exhibits significant advantages in detecting heavy precipitation events. Ablation studies further validate the effectiveness of each module. The results indicate that MSRGAN not only improves the accuracy of precipitation downscaling but also preserves spatial structural consistency and physical plausibility, offering a novel technological approach for urban flood warning, weather forecasting, and regional hydrological modeling.
引用
收藏
页数:20
相关论文
共 39 条
[1]   Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning [J].
Chaney, Nathaniel W. ;
Herman, Jonathan D. ;
Ek, Michael B. ;
Wood, Eric F. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (22) :13218-13235
[2]   Comparison of Different Methods for Spatial Downscaling of GPM IMERG V06B Satellite Precipitation Product Over a Typical Arid to Semi-Arid Area [J].
Chen, Cheng ;
Chen, Qiuwen ;
Qin, Binni ;
Zhao, Shuhe ;
Duan, Zheng .
FRONTIERS IN EARTH SCIENCE, 2020, 8
[3]   DeepDT: Generative Adversarial Network for High-Resolution Climate Prediction [J].
Cheng, Jianxin ;
Liu, Jin ;
Kuang, Qiuming ;
Xu, Zhou ;
Shen, Chenkai ;
Liu, Wang ;
Zhou, Kang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[4]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[5]   Downscaling MODIS Land Surface Temperature Product Using an Adaptive Random Forest Regression Method and Google Earth Engine for a 19-Years Spatiotemporal Trend Analysis Over Iran [J].
Ebrahimy, Hamid ;
Aghighi, Hossein ;
Azadbakht, Mohsen ;
Amani, Meisam ;
Mahdavi, Sahel ;
Matkan, Ali Akbar .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 :2103-2112
[6]  
Howard AG, 2017, Arxiv, DOI arXiv:1704.04861
[7]   Understanding the Dependence of Satellite Rainfall Uncertainty on Topography and Climate for Hydrologic Model Simulation [J].
Gebregiorgis, Abebe S. ;
Hossain, Faisal .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01) :704-718
[8]   Strictly proper scoring rules, prediction, and estimation [J].
Gneiting, Tilmann ;
Raftery, Adrian E. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) :359-378
[9]   Spatial downscaling of precipitation using adaptable random forests [J].
He, Xiaogang ;
Chaney, Nathaniel W. ;
Schleiss, Marc ;
Sheffield, Justin .
WATER RESOURCES RESEARCH, 2016, 52 (10) :8217-8237
[10]   Robust responses of the hydrological cycle to global warming [J].
Held, Isaac M. ;
Soden, Brian J. .
JOURNAL OF CLIMATE, 2006, 19 (21) :5686-5699