Electron microscopy in nanoparticle self-assembly research

被引:0
作者
Chen, Jun [1 ]
Yan, Chenyu [2 ]
Zhu, Baixu [2 ]
Huang, Chuanliang [2 ]
Cheng, Fanrui [2 ]
Duan, Hanyi [2 ]
Ye, Xingchen [2 ]
机构
[1] Indiana Univ, Electron Microscopy Ctr, Bloomington, IN 47405 USA
[2] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
nanoparticle self-assembly; nanoparticle superlattices; electron microscopy; imaging; diffraction; tomography; liquid cell transmission electron microscopy; BINARY NANOCRYSTAL SUPERLATTICES; COLLOIDAL NANOCRYSTALS; SHAPE; TOMOGRAPHY; PATCHINESS; GROWTH; CRYSTALLIZATION; RECONSTRUCTION; ORGANIZATION; DIFFUSION;
D O I
10.26599/NR.2025.94907286
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanoparticle self-assembly is a vital research field with significant implications for fundamental science and a wide range of technological applications. This bottom-up approach enables the design and fabrication of mesoscopic materials with distinct electronic, magnetic, optical, mechanical, and catalytic properties. Monodisperse nanoparticles serve as fundamental building blocks for creating long-range ordered structures known as superlattices, superstructures, or supercrystals. Advances in wet chemical synthesis methods have provided access to a variety of nanoparticle shapes, sizes, and compositions, establishing a solid foundation for extensive studies in self-assembly. This review highlights the utility and advantages of various electron microscopy methods for characterizing the structures and dynamics of nanoparticle assemblies, ranging from conventional imaging and diffraction techniques to cutting-edge approaches such as electron tomography, focused ion beam scanning electron microscopy tomography, four-dimensional scanning transmission electron microscopy, and liquid cell transmission electron microscopy. These methods enable the acquisition of detailed two-dimensional and threedimensional structural information of nanoparticle superlattices in dry, frozen, and liquid states. We also highlight the development of advanced data processing algorithms and their implementation in open-source software packages to facilitate electron microscopy data analysis. By leveraging machine learning techniques, researchers can efficiently manage large and complex electron microscopy datasets and gain deeper insights into the mechanisms of nanoparticle self-assembly. We anticipate that the comprehensive electron microscopy toolkit, combined with advanced computational algorithms and machine learning, will continue to generate new knowledge and insights in nanoparticle self-assembly research.
引用
收藏
页数:16
相关论文
共 122 条
[91]   Binary icosahedral clusters of hard spheres in spherical confinement [J].
Wang, Da ;
Dasgupta, Tonnishtha ;
van der Wee, Ernest B. ;
Zanaga, Daniele ;
Altantzis, Thomas ;
Wu, Yaoting ;
Coli, Gabriele M. ;
Murray, Christopher B. ;
Bals, Sara ;
Dijkstra, Marjolein ;
van Blaaderen, Alfons .
NATURE PHYSICS, 2021, 17 (01) :128-134
[92]   Self-Assembled Colloidal Superparticles from Nanorods [J].
Wang, Tie ;
Zhuang, Jiaqi ;
Lynch, Jared ;
Chen, Ou ;
Wang, Zhongliang ;
Wang, Xirui ;
LaMontagne, Derek ;
Wu, Huimeng ;
Wang, Zhongwu ;
Cao, Y. Charles .
SCIENCE, 2012, 338 (6105) :358-363
[93]   Controlled Self-Assembly of Gold Nanotetrahedra into Quasicrystals and Complex Periodic Supracrystals [J].
Wang, Yi ;
Chen, Jun ;
Li, Ruipeng ;
Gotz, Alexander ;
Drobek, Dominik ;
Przybilla, Thomas ;
Hubner, Sabine ;
Pelz, Philipp ;
Yang, Lin ;
Apeleo Zubiri, Benjamin ;
Spiecker, Erdmann ;
Engel, Michael ;
Ye, Xingchen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (32) :17902-17911
[94]   Structural Diversity in Dimension-Controlled Assemblies of Tetrahedral Gold Nanocrystals [J].
Wang, Yi ;
Chen, Jun ;
Zhong, Yaxu ;
Jeong, Soojin ;
Li, Ruipeng ;
Ye, Xingchen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (30) :13538-13546
[95]   Kinetically Controlled Self-Assembly of Binary Polymer-Grafted Nanocrystals into Ordered Superstructures via Solvent Vapor Annealing [J].
Wang, Yi ;
Chen, Jun ;
Zhu, Chenhui ;
Zhu, Baixu ;
Jeong, Soojin ;
Yi, Yi ;
Liu, Yang ;
Fiadorwu, Joshua ;
He, Peng ;
Ye, Xingchen .
NANO LETTERS, 2021, 21 (12) :5053-5059
[96]   Soft matter and nanomaterials characterization by cryogenic transmission electron microscopy [J].
Watt, John ;
Huber, Dale L. ;
Stewart, Phoebe L. .
MRS BULLETIN, 2019, 44 (12) :942-948
[97]  
Williams D.B., 2009, Transmission Electron Microscopy: A Textbook For Materials Science, V2, DOI DOI 10.1007/978-0-387-76501-3
[98]   Electron-beam-driven chemical processes during liquid phase transmission electron microscopy [J].
Woehl, Taylor J. ;
Moser, Trevor ;
Evans, James E. ;
Ross, Frances M. .
MRS BULLETIN, 2020, 45 (09) :746-753
[99]   The Mechanisms for Nanoparticle Surface Diffusion and Chain Self-Assembly Determined from Real-Time Nanoscale Kinetics in Liquid [J].
Woehl, Taylor J. ;
Prozorov, Tanya .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (36) :21261-21269
[100]   Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? [J].
Xia, Younan ;
Xiong, Yujie ;
Lim, Byungkwon ;
Skrabalak, Sara E. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (01) :60-103