Electron microscopy in nanoparticle self-assembly research

被引:0
作者
Chen, Jun [1 ]
Yan, Chenyu [2 ]
Zhu, Baixu [2 ]
Huang, Chuanliang [2 ]
Cheng, Fanrui [2 ]
Duan, Hanyi [2 ]
Ye, Xingchen [2 ]
机构
[1] Indiana Univ, Electron Microscopy Ctr, Bloomington, IN 47405 USA
[2] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
nanoparticle self-assembly; nanoparticle superlattices; electron microscopy; imaging; diffraction; tomography; liquid cell transmission electron microscopy; BINARY NANOCRYSTAL SUPERLATTICES; COLLOIDAL NANOCRYSTALS; SHAPE; TOMOGRAPHY; PATCHINESS; GROWTH; CRYSTALLIZATION; RECONSTRUCTION; ORGANIZATION; DIFFUSION;
D O I
10.26599/NR.2025.94907286
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanoparticle self-assembly is a vital research field with significant implications for fundamental science and a wide range of technological applications. This bottom-up approach enables the design and fabrication of mesoscopic materials with distinct electronic, magnetic, optical, mechanical, and catalytic properties. Monodisperse nanoparticles serve as fundamental building blocks for creating long-range ordered structures known as superlattices, superstructures, or supercrystals. Advances in wet chemical synthesis methods have provided access to a variety of nanoparticle shapes, sizes, and compositions, establishing a solid foundation for extensive studies in self-assembly. This review highlights the utility and advantages of various electron microscopy methods for characterizing the structures and dynamics of nanoparticle assemblies, ranging from conventional imaging and diffraction techniques to cutting-edge approaches such as electron tomography, focused ion beam scanning electron microscopy tomography, four-dimensional scanning transmission electron microscopy, and liquid cell transmission electron microscopy. These methods enable the acquisition of detailed two-dimensional and threedimensional structural information of nanoparticle superlattices in dry, frozen, and liquid states. We also highlight the development of advanced data processing algorithms and their implementation in open-source software packages to facilitate electron microscopy data analysis. By leveraging machine learning techniques, researchers can efficiently manage large and complex electron microscopy datasets and gain deeper insights into the mechanisms of nanoparticle self-assembly. We anticipate that the comprehensive electron microscopy toolkit, combined with advanced computational algorithms and machine learning, will continue to generate new knowledge and insights in nanoparticle self-assembly research.
引用
收藏
页数:16
相关论文
共 122 条
[1]   Fast Electron Tomography for Nanomaterials [J].
Albrecht, Wiebke ;
Bals, Sara .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (50) :27276-27286
[2]   Nanocrystal Assemblies: Current Advances and Open Problems [J].
Bassani, Carlos L. ;
van Anders, Greg ;
Banin, Uri ;
Baranov, Dmitry ;
Chen, Qian ;
Dijkstra, Marjolein ;
Dimitriyev, Michael S. ;
Efrati, Efi ;
Faraudo, Jordi ;
Gang, Oleg ;
Gaston, Nicola ;
Golestanian, Ramin ;
Guerrero-Garcia, G. Ivan ;
Gruenwald, Michael ;
Haji-Akbari, Amir ;
Ibanez, Maria ;
Karg, Matthias ;
Kraus, Tobias ;
Lee, Byeongdu ;
Van Lehn, Reid C. ;
Macfarlane, Robert J. ;
Mognetti, Bortolo M. ;
Nikoubashman, Arash ;
Osat, Saeed ;
Prezhdo, Oleg V. ;
Rotskoff, Grant M. ;
Saiz, Leonor ;
Shi, An-Chang ;
Skrabalak, Sara ;
Smalyukh, Ivan I. ;
Tagliazucchi, Mario ;
Talapin, Dmitri V. ;
Tkachenko, Alexei V. ;
Tretiak, Sergei ;
Vaknin, David ;
Widmer-Cooper, Asaph ;
Wong, Gerard C. L. ;
Ye, Xingchen ;
Zhou, Shan ;
Rabani, Eran ;
Engel, Michael ;
Travesset, Alex .
ACS NANO, 2024, 18 (23) :14791-14840
[3]   Electrostatic co-assembly of nanoparticles with oppositely charged small molecules into static and dynamic superstructures [J].
Bian, Tong ;
Gardin, Andrea ;
Gemen, Julius ;
Houben, Lothar ;
Perego, Claudio ;
Lee, Byeongdu ;
Elad, Nadav ;
Chu, Zonglin ;
Pavan, Giovanni M. ;
Klajn, Rafal .
NATURE CHEMISTRY, 2021, 13 (10) :940-+
[4]   Energetic and Entropic Contributions to Self-Assembly of Binary Nanocrystal Superlattices: Temperature as the Structure-Directing Factor [J].
Bodnarchuk, Maryna I. ;
Kovalenko, Maksym V. ;
Heiss, Wolfgang ;
Talapin, Dmitri V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (34) :11967-11977
[5]   Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials [J].
Boles, Michael A. ;
Engel, Michael ;
Talapin, Dmitri V. .
CHEMICAL REVIEWS, 2016, 116 (18) :11220-11289
[6]   Self-Assembly of Tetrahedral CdSe Nanocrystals: Effective "Patchiness" via Anisotropic Steric Interaction [J].
Boles, Michael A. ;
Talapin, Dmitri V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (16) :5868-5871
[7]   Electron Tomography Resolves a Novel Crystal Structure in a Binary Nanocrystal Superlattice [J].
Boneschanscher, Mark P. ;
Evers, Wiel H. ;
Qi, Weikai ;
Meeldijk, Johannes D. ;
Dijkstra, Marjolein ;
Vanmaekelbergh, Daniel .
NANO LETTERS, 2013, 13 (03) :1312-1316
[8]   Advances in 3D focused ion beam tomography [J].
Cantoni, Marco ;
Holzer, Lorenz .
MRS BULLETIN, 2014, 39 (04) :354-360
[9]  
Carter C.B., 2016, Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry, P518
[10]   Electron microscopy of nanoparticle superlattice formation at a solid-liquid interface in nonpolar liquids [J].
Cepeda-Perez, E. ;
Doblas, D. ;
Kraus, T. ;
de Jonge, N. .
SCIENCE ADVANCES, 2020, 6 (20)