ContraDTI: Improved drug-target interaction prediction via multi-view contrastive learning

被引:0
作者
Liao, Zhirui [1 ,4 ,5 ,9 ]
Xie, Lei [2 ,3 ]
Zhu, Shanfeng [4 ,5 ,6 ,7 ,8 ]
机构
[1] Guangxi Minzu Univ, Sch Phys & Elect Informat, 188 East Daxue Rd, Nanning 530006, Peoples R China
[2] Northeastern Univ, Ctr Drug Discovery, 140 Fenway, Boston, MA 02115 USA
[3] Northeastern Univ, Dept Pharmaceut Sci, 140 Fenway, Boston, MA 02115 USA
[4] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, MOE Frontiers Ctr Brain Sci, 220 Handan Rd, Shanghai 200433, Peoples R China
[5] Fudan Univ, MOE Frontiers Ctr Brain Sci, 220 Handan Rd, Shanghai 200433, Peoples R China
[6] Fudan Univ, Key Lab Computat Neurosci & Brain Inspired Intell, Minist Educ, 220 Handan Rd, Shanghai 200433, Peoples R China
[7] Fudan Univ, Shanghai Inst Artificial Intelligence Algorithm, 220 Handan Rd, Shanghai, Peoples R China
[8] Minist Educ, Zhangjiang Fudan Int Innovat Ctr, 220 Handan Rd, Shanghai, Peoples R China
[9] Guangxi Coll & Univ Engn Res Ctr Multimodal Inform, 188 Daxuedong Rd, Nanning 530006, Peoples R China
基金
中国国家自然科学基金;
关键词
Drug-target interaction prediction; Contrastive learning; Graph convolutional networks; Convolutional neural networks; KINASE INHIBITOR;
D O I
10.1016/j.artmed.2025.103195
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Drug-target interaction (DTI) identification is one of the crucial issues in the field of drug discovery. Machine learning approaches offer efficient ways to address this issue, reducing expensive and time-consuming laboratory experiments. However, the scarcity of annotated drug data with labels restricts supervised machine learning applications to DTI prediction. Drawing inspiration from recent advances in contrastive learning, we present ContraDTI-a novel framework that adopts multi-view contrastive learning to overcome data limitations in this paper. Our model considers the molecular graph of a drug as the main view and the SMILES string of a drug as the side view, employing two types of loss functions for the contrast of the main view and the cross-view alignment between the main and the side views. Extensive experiments on both single-target and multi-target DTI datasets demonstrate that ContraDTI enhances the classification performance of DTI prediction, particularly when labeled data is scarce. ContraDTI can be a powerful tool for DTI prediction in data-limited scenarios. The code of this paper is available at https://github.com/zhiruiliao/ContraDTI.
引用
收藏
页数:16
相关论文
共 37 条
[1]  
Bachman P, 2019, ADV NEUR IN, V32
[2]  
Bagherian M, 2021, BRIEF BIOINFORM, V22, P247, DOI 10.1093/bib/bbz157
[3]   RCSB Protein Data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning [J].
Burley, Stephen K. ;
Bhikadiya, Charmi ;
Bi, Chunxiao ;
Bittrich, Sebastian ;
Chao, Henry ;
Chen, Li ;
Craig, Paul A. ;
Crichlow, Gregg, V ;
Dalenberg, Kenneth ;
Duarte, Jose M. ;
Dutta, Shuchismita ;
Fayazi, Maryam ;
Feng, Zukang ;
Flatt, Justin W. ;
Ganesan, Sai ;
Ghosh, Sutapa ;
Goodsell, David S. ;
Green, Rachel Kramer ;
Guranovic, Vladimir ;
Henry, Jeremy ;
Hudson, Brian P. ;
Khokhriakov, Igor ;
Lawson, Catherine L. ;
Liang, Yuhe ;
Lowe, Robert ;
Peisach, Ezra ;
Persikova, Irina ;
Piehl, Dennis W. ;
Rose, Yana ;
Sali, Andrej ;
Segura, Joan ;
Sekharan, Monica ;
Shao, Chenghua ;
Vallat, Brinda ;
Voigt, Maria ;
Webb, Ben ;
Westbrook, John D. ;
Whetstone, Shamara ;
Young, Jasmine Y. ;
Zalevsky, Arthur ;
Zardecki, Christine .
NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) :D488-D508
[4]   TransformerCPI: improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments [J].
Chen, Lifan ;
Tan, Xiaoqin ;
Wang, Dingyan ;
Zhong, Feisheng ;
Liu, Xiaohong ;
Yang, Tianbiao ;
Luo, Xiaomin ;
Chen, Kaixian ;
Jiang, Hualiang ;
Zheng, Mingyue .
BIOINFORMATICS, 2020, 36 (16) :4406-4414
[5]  
Chen T, 2020, PR MACH LEARN RES, V119
[6]  
Chithrananda S, 2020, Arxiv, DOI [arXiv:2010.09885, 10.48550/arXiv.2010.09885]
[7]   Discovery of [4-amino-2-(1-methanesulfonylpiperidin-4-ylamino) pyrimidin-5-yl](2,3-difluoro-6-methoxyphenyl)methanone (R547), a potent and selective cyclin-dependent kinase inhibitor with significant in vivo antitumor activity [J].
Chu, Xin-Jie ;
DePinto, Wanda ;
Bartkovitz, David ;
So, Sung-Sau ;
Vu, Binh T. ;
Packman, Kathryn ;
Lukacs, Christine ;
Ding, Qingjie ;
Jiang, Nan ;
Wang, Ka ;
Goelzer, Petra ;
Yin, Xuefeng ;
Smith, Melissa A. ;
Higgins, Brian X. ;
Chen, Yingsi ;
Xiang, Qing ;
Moliterni, John ;
Kaplan, Gerald ;
Graves, Bradford ;
Lovey, Allen ;
Fotouhi, Nader .
JOURNAL OF MEDICINAL CHEMISTRY, 2006, 49 (22) :6549-6560
[8]   CCL-DTI: contributing the contrastive loss in drug-target interaction prediction [J].
Dehghan, Alireza ;
Abbasi, Karim ;
Razzaghi, Parvin ;
Banadkuki, Hossein ;
Gharaghani, Sajjad .
BMC BIOINFORMATICS, 2024, 25 (01)
[9]   TripletMultiDTI: Multimodal representation learning in drug-target interaction prediction with triplet loss function [J].
Dehghan, Alireza ;
Razzaghi, Parvin ;
Abbasi, Karim ;
Gharaghani, Sajjad .
EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232
[10]   Similarity-based machine learning methods for predicting drug-target interactions: a brief review [J].
Ding, Hao ;
Takigawa, Ichigaku ;
Mamitsuka, Hiroshi ;
Zhu, Shanfeng .
BRIEFINGS IN BIOINFORMATICS, 2014, 15 (05) :734-747