Tailoring oxygen vacancies of MnO2 for peroxymonosulfate activation to singlet oxygen for contaminant degradation

被引:0
作者
Ndayiragije, Sylvestre [1 ,2 ]
Zhou, Yu [1 ]
Wang, Xiaobo [3 ]
Zhu, Lihua [1 ]
Wang, Shaobin [4 ]
Wang, Nan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Key Lab Mat Chem Energy Convers & Storage, Minist Educ, Wuhan 430074, Peoples R China
[2] Univ Burundi, Fac Sci, CRSNE, BP 2700, Bujumbura, Burundi
[3] Wuhan Polytech Univ, Coll Chem & Environm Engn, Wuhan 430023, Peoples R China
[4] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2025年 / 13卷 / 05期
基金
中国国家自然科学基金;
关键词
PMS activation; Oxygen vacancies; MnO2; Ofloxacin; Mechanochemistry; PHENOL DEGRADATION; OXIDATION; CATALYST; REMOVAL;
D O I
10.1016/j.jece.2025.117716
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An organic additive-assisted mechanochemical method was developed to tailor one-electron-trapped oxygen vacancy with a net charge of + 1 (VO center dot+) in MnO2 for peroxymonosulfate (PMS) activation toward fast degradation of aqueous organics. The obtained MnO2 (bm-MnO2/Glu) showed 3.1 and 1.6 times more VO center dot+ sites than pristine MnO2 (nm-MnO2) and milled MnO2 (bm-MnO2), respectively. PMS activation with bm-MnO2/Glu achieved complete degradation of ofloxacin in real water samples in 10 min with excellent stability. Isotope labelling experiments showed both PMS and lattice oxygen (OL) of MnO2 involved in the generation of 1O2 as the dominant reactive specie, and water contributed to regenerating OL in MnO2. Owing to more VO center dot+, bm-MnO2/ Glu presented enhanced PMS adsorption, electric conductivity of MnO2 and Mn4+/Mn3+ redox reaction, which quantitatively matched to the increasing factor for OFX degradation, justifying the multiple roles of VO center dot+ in improved catalytic performance of MnO2.
引用
收藏
页数:12
相关论文
共 50 条
[1]  
Huang K.Z., Zhang H., Direct electron-transfer-based peroxymonosulfate activation by iron doped manganese oxide (δ-MnO<sub>2</sub>) and the development of galvanic oxidation processes (GOPs), Environ. Sci. Technol., 53, pp. 12610-12620, (2019)
[2]  
Wang Z., Jia H., Liu Z., Peng Z., Dai Y., Zhang C., Guo X., Wang T., Zhu L., Greatly enhanced oxidative activity of δ-MnO<sub>2</sub> to degrade organic pollutants driven by dominantly exposed {-111} facets, J. Hazard. Mater., 413, (2021)
[3]  
Zhao W., Rubio S.J.B., Dang Y., Suib S.L., Green electrochemical energy storage devices based on sustainable manganese dioxides, ACS EST Eng., 2, pp. 20-42, (2021)
[4]  
Takashima T., Hashimoto K., Nakamura R., Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO<sub>2</sub> electrocatalysts, J. Am. Chem. Soc., 134, pp. 1519-1527, (2012)
[5]  
Huang J., Zhong S., Dai Y., Liu C.-C., Zhang H., Effect of MnO<sub>2</sub> phase structure on the oxidative reactivity toward bisphenol A degradation, Environ. Sci. Technol., 52, pp. 11309-11318, (2018)
[6]  
Ma J., Zhang S., Duan X., Wang Y., Wu D., Pang J., Wang X., Wang S., Catalytic oxidation of sulfachloropyridazine by MnO<sub>2</sub>: effects of crystalline phase and peroxide oxidants, Chemosphere, 267, (2021)
[7]  
Peng W.-C., Wang S.-B., Li X.-Y., Shape-controlled synthesis of one-dimensional α-MnO<sub>2</sub> nanocrystals for organic detection and pollutant degradation, Sep Purif. Technol., 163, pp. 15-22, (2016)
[8]  
Luo S., Duan L., Sun B., Wei M., Li X., Xu A., Manganese oxide octahedral molecular sieve (OMS-2) as an effective catalyst for degradation of organic dyes in aqueous solutions in the presence of peroxymonosulfate, Appl. Catal. B, 164, pp. 92-99, (2015)
[9]  
Ndayiragije S., Zhang Y., Zhou Y., Song Z., Wang N., Majima T., Zhu L., Mechanochemically tailoring oxygen vacancies of MnO<sub>2</sub> for efficient degradation of tetrabromobisphenol A with peroxymonosulfate, Appl. Catal. B, 307, (2022)
[10]  
Wang Y., Indrawirawan S., Duan X., Sun H., Ang H., Tade M., Wang S., New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over one-dimensional α-MnO<sub>2</sub> nanostructures, Chem. Eng. J., 266, pp. 12-20, (2015)