Placenta segmentation redefined: review of deep learning integration of magnetic resonance imaging and ultrasound imaging

被引:0
作者
Jittou, Asmaa [1 ]
El Fazazy, Khalid [1 ]
Riffi, Jamal [1 ]
机构
[1] Univ Sidi Mohamed Ben Abdellah, Fac Sci Dhar El Mahraz, Lab Comp Sci Innovat & Artificial Intelligence, Fes 30000, Morocco
关键词
Deep learning; Segmentation; Placenta; Magnetic resonance imaging; Ultrasound; PRACTICE GUIDELINES; DIAGNOSTIC-VALUE; MRI; BENCHMARKING; PERFORMANCE; ACCRETA;
D O I
10.1186/s42492-025-00197-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Placental segmentation is critical for the quantitative analysis of prenatal imaging applications. However, segmenting the placenta using magnetic resonance imaging (MRI) and ultrasound is challenging because of variations in fetal position, dynamic placental development, and image quality. Most segmentation methods define regions of interest with different shapes and intensities, encompassing the entire placenta or specific structures. Recently, deep learning has emerged as a key approach that offer high segmentation performance across diverse datasets. This review focuses on the recent advances in deep learning techniques for placental segmentation in medical imaging, specifically MRI and ultrasound modalities, and cover studies from 2019 to 2024. This review synthesizes recent research, expand knowledge in this innovative area, and highlight the potential of deep learning approaches to significantly enhance prenatal diagnostics. These findings emphasize the importance of selecting appropriate imaging modalities and model architectures tailored to specific clinical scenarios. In addition, integrating both MRI and ultrasound can enhance segmentation performance by leveraging complementary information. This review also discusses the challenges associated with the high costs and limited availability of advanced imaging technologies. It provides insights into the current state of placental segmentation techniques and their implications for improving maternal and fetal health outcomes, underscoring the transformative impact of deep learning on prenatal diagnostics.
引用
收藏
页数:20
相关论文
共 90 条
[1]   Advanced MR imaging of the placenta: Exploring the in utero placenta-brain connection [J].
Andescavage, Nickie Niforatos ;
du Plessis, Adre ;
Limperopoulos, Catherine .
SEMINARS IN PERINATOLOGY, 2015, 39 (02) :113-123
[2]   Multi-centre deep learning for placenta segmentation in obstetric ultrasound with multi-observer and cross-country generalization [J].
Andreasen, Lisbeth Anita ;
Feragen, Aasa ;
Christensen, Anders Nymark ;
Thybo, Jonathan Kistrup ;
Svendsen, Morten Bo S. ;
Zepf, Kilian ;
Lekadir, Karim ;
Tolsgaard, Martin Gronnebaek .
SCIENTIFIC REPORTS, 2023, 13 (01)
[3]   Re-Routing Drugs to Blood Brain Barrier: A Comprehensive Analysis of Machine Learning Approaches With Fingerprint Amalgamation and Data Balancing [J].
Ansari, Mohammed Yusuf ;
Chandrasekar, Vaisali ;
Singh, Ajay Vikram ;
Dakua, Sarada Prasad .
IEEE ACCESS, 2023, 11 :9890-9906
[4]   Dense-PSP-UNet: A neural network for fast inference liver ultrasound segmentation [J].
Ansari, Mohammed Yusuf ;
Yang, Yin ;
Meher, Pramod Kumar ;
Dakua, Sarada Prasad .
COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 153
[5]   A lightweight neural network with multiscale feature enhancement for liver CT segmentation [J].
Ansari, MohammedYusuf ;
Yang, Yin ;
Balakrishnan, Shidin ;
Abinahed, Julien ;
Al-Ansari, Abdulla ;
Warfa, Mohamed ;
Almokdad, Omran ;
Barah, Ali ;
Omer, Ahmed ;
Singh, AjayVikram ;
Meher, Pramod Kumar ;
Bhadra, Jolly ;
Halabi, Osama ;
Azampour, Mohammad Farid ;
Navab, Nassir ;
Wendler, Thomas ;
Dakua, Sarada Prasad .
SCIENTIFIC REPORTS, 2022, 12 (01)
[6]   Comparative analysis of ultrasound and MRI in the diagnosis of placenta accreta spectrum [J].
Barzilay, Eran ;
Brandt, Benny ;
Gilboa, Yinon ;
Kassif, Eran ;
Achiron, Reuven ;
Raviv-Zilka, Lisa ;
Katorza, Eldad .
JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2022, 35 (21) :4056-4059
[7]   Using Machine Learning to Predict Complications in Pregnancy: A Systematic Review [J].
Bertini, Ayleen ;
Salas, Rodrigo ;
Chabert, Steren ;
Sobrevia, Luis ;
Pardo, Fabian .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 9
[8]   Addressing annotation and data scarcity when designing machine learning strategies for neurophotonics [J].
Bouchard, Catherine ;
Bernatchez, Renaud ;
Lavoie-Cardinal, Flavie .
NEUROPHOTONICS, 2023, 10 (04)
[9]   MRI Features Predictive of Invasive Placenta With Extrauterine Spread in High-Risk Gravid Patients: A Prospective Evaluation [J].
Bourgioti, Charis ;
Zafeiropoulou, Konstantina ;
Fotopoulos, Stavros ;
Nikolaidou, Maria Evangelia ;
Antoniou, Aristeidis ;
Tzavara, Chara ;
Moulopoulos, Lia Angela .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2018, 211 (03) :701-711
[10]  
Saavedra AC, 2020, IEEE INT ULTRA SYM