In situ antigen-capture strategies for enhancing dendritic cell-mediated anti-tumor immunity

被引:0
作者
Zheng, Jingben [1 ]
Li, Xiaoye [1 ]
He, Ao [1 ]
Zhang, Yu [1 ]
Yang, Yuebo [2 ]
Dang, Meng [1 ]
Li, Qiang [1 ]
Mou, Yongbin [1 ]
Dong, Heng [1 ]
机构
[1] Nanjing Univ, Nanjing Stomatol Hosp, Affiliated Hosp, Inst Stomatol,Med Sch, 30 Zhongyang Rd, Nanjing 210008, Jiangsu, Peoples R China
[2] Natl Univ Singapore, 21 Lower Kent Ridge Rd, Singapore 119276, Singapore
关键词
Antigen capture; Immunotherapy; Tumor suppression; Dendritic cells; Nanovaccine; Biomaterials; DRUG-DELIVERY; CALRETICULIN EXPOSURE; T-CELLS; ANTICANCER CHEMOTHERAPY; PHOTODYNAMIC THERAPY; LIPID NANOPARTICLES; LYMPH-NODE; NK CELLS; TUMOR; LIPOSOMES;
D O I
10.1016/j.jconrel.2025.113984
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dendritic cell (DC)-mediated tumor immunotherapy has demonstrated considerable potential, effectively bridging tumor antigens with specific anti-tumor immune responses. However, the heterogeneous and immunosuppressive tumor microenvironment (TME) frequently impairs DC function by inhibiting antigen uptake, restricting differentiation into mature DCs (mDCs), and limiting migration to tumor-draining lymph nodes (TDLNs), ultimately resulting in immune tolerance that diminishes specific anti-tumor immune responses. To overcome these limitations and effectively restore the DC-mediated link between tumor-derived antigens and robust anti-tumor immunity, nanovaccines utilizing in situ antigen-capture strategies have been developed. These strategies uniquely offer personalized and targeted activation of anti-tumor immune responses. In this review, we first address the influence of the TME on DC functionality, highlighting the numerous immunosuppressive factors that restrict efficient antigen uptake by DCs. Subsequently, we detail the core mechanisms underlying in situ antigen-capturing nanovaccines (AC-NVs), including covalent, noncovalent, and combined antigen capture methods. Furthermore, recent advances in AC-NVs constructed from various biomaterials are reviewed, emphasizing their intrinsic material properties and antigen-capturing capabilities for functionalizing DCs and enhancing specific anti-tumor immunity. Finally, we discuss current challenges and future perspectives for AC-NVs, emphasizing their potential role in developing personalized cancer vaccines, optimizing immune responses, and facilitating clinical translation.
引用
收藏
页数:36
相关论文
共 309 条
[11]   Harnessing Bacterial Membrane Components for Tumor Vaccines: Strategies and Perspectives [J].
Bai, Zhenxin ;
Wang, Xuanyu ;
Liang, Tianming ;
Xu, Guangyu ;
Cai, Jinzhou ;
Xu, Wei ;
Yang, Kai ;
Hu, Lin ;
Pei, Pei .
ADVANCED HEALTHCARE MATERIALS, 2024, 13 (26)
[12]   Liposome-targeted delivery for highly potent drugs [J].
Bardania, Hassan ;
Tarvirdipour, Shabnam ;
Dorkoosh, Farid .
ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2017, 45 (08) :1478-1489
[13]   Tumor-derived prostaglandin E2 programs cDC1 dysfunction to impair intratumoral orchestration of anti-cancer T cell responses [J].
Bayerl, Felix ;
Meiser, Philippa ;
Donakonda, Sainitin ;
Hirschberger, Anna ;
Lacher, Sebastian B. ;
Pedde, Anna-Marie ;
Hermann, Chris D. ;
Elewaut, Anais ;
Knolle, Moritz ;
Ramsauer, Lukas ;
Rudolph, Thomas J. ;
Grassmann, Simon ;
Oellinger, Rupert ;
Kirchhammer, Nicole ;
Trefny, Marcel ;
Anton, Martina ;
Wohlleber, Dirk ;
Hoechst, Bastian ;
Zaremba, Anne ;
Krueger, Achim ;
Rad, Roland ;
Obenauf, Anna C. ;
Schadendorf, Dirk ;
Zippelius, Alfred ;
Buchholz, Veit R. ;
Schraml, Barbara U. ;
Boettcher, Jan P. .
IMMUNITY, 2023, 56 (06) :1341-+
[14]   In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas [J].
Bell, D ;
Chomarat, P ;
Broyles, D ;
Netto, G ;
Harb, GM ;
Lebecque, S ;
Valladeau, J ;
Davoust, J ;
Palucka, KA ;
Banchereau, J .
JOURNAL OF EXPERIMENTAL MEDICINE, 1999, 190 (10) :1417-1425
[15]   Natural immunity to cancer in humans [J].
Bindea, Gabriela ;
Mlecnik, Bernhard ;
Fridman, Wolf-Herman ;
Pages, Franck ;
Galon, Jerome .
CURRENT OPINION IN IMMUNOLOGY, 2010, 22 (02) :215-222
[16]   Understanding the tumor immune microenvironment (TIME) for effective therapy [J].
Binnewies, Mikhail ;
Roberts, Edward W. ;
Kersten, Kelly ;
Chan, Vincent ;
Fearon, Douglas F. ;
Merad, Miriam ;
Coussens, Lisa M. ;
Gabrilovich, Dmitry I. ;
Ostrand-Rosenberg, Suzanne ;
Hedrick, Catherine C. ;
Vonderheide, Robert H. ;
Pittet, Mikael J. ;
Jain, Rakesh K. ;
Zou, Weiping ;
Howcroft, T. Kevin ;
Woodhouse, Elisa C. ;
Weinberg, Robert A. ;
Krummel, Matthew F. .
NATURE MEDICINE, 2018, 24 (05) :541-550
[17]   Principles of nanoparticle design for overcoming biological barriers to drug delivery [J].
Blanco, Elvin ;
Shen, Haifa ;
Ferrari, Mauro .
NATURE BIOTECHNOLOGY, 2015, 33 (09) :941-951
[18]   CD4+ T cell help in cancer immunology and immunotherapy [J].
Borst, Jannie ;
Ahrends, Tomasz ;
Babala, Nikolina ;
Melief, Cornelis J. M. ;
Kastenmueller, Wolfgang .
NATURE REVIEWS IMMUNOLOGY, 2018, 18 (10) :635-647
[19]   Striking a balance: new perspectives on homeostatic dendritic cell maturation [J].
Bosteels, Victor ;
Janssens, Sophie .
NATURE REVIEWS IMMUNOLOGY, 2025, 25 (02) :125-140
[20]   The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment [J].
Brown, Timothy P. ;
Bhattacharjee, Pushpak ;
Ramachandran, Sabarish ;
Sivaprakasam, Sathish ;
Ristic, Bojana ;
Sikder, Mohd Omar F. ;
Ganapathy, Vadivel .
ONCOGENE, 2020, 39 (16) :3292-3304