In situ antigen-capture strategies for enhancing dendritic cell-mediated anti-tumor immunity

被引:0
作者
Zheng, Jingben [1 ]
Li, Xiaoye [1 ]
He, Ao [1 ]
Zhang, Yu [1 ]
Yang, Yuebo [2 ]
Dang, Meng [1 ]
Li, Qiang [1 ]
Mou, Yongbin [1 ]
Dong, Heng [1 ]
机构
[1] Nanjing Univ, Nanjing Stomatol Hosp, Affiliated Hosp, Inst Stomatol,Med Sch, 30 Zhongyang Rd, Nanjing 210008, Jiangsu, Peoples R China
[2] Natl Univ Singapore, 21 Lower Kent Ridge Rd, Singapore 119276, Singapore
关键词
Antigen capture; Immunotherapy; Tumor suppression; Dendritic cells; Nanovaccine; Biomaterials; DRUG-DELIVERY; CALRETICULIN EXPOSURE; T-CELLS; ANTICANCER CHEMOTHERAPY; PHOTODYNAMIC THERAPY; LIPID NANOPARTICLES; LYMPH-NODE; NK CELLS; TUMOR; LIPOSOMES;
D O I
10.1016/j.jconrel.2025.113984
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dendritic cell (DC)-mediated tumor immunotherapy has demonstrated considerable potential, effectively bridging tumor antigens with specific anti-tumor immune responses. However, the heterogeneous and immunosuppressive tumor microenvironment (TME) frequently impairs DC function by inhibiting antigen uptake, restricting differentiation into mature DCs (mDCs), and limiting migration to tumor-draining lymph nodes (TDLNs), ultimately resulting in immune tolerance that diminishes specific anti-tumor immune responses. To overcome these limitations and effectively restore the DC-mediated link between tumor-derived antigens and robust anti-tumor immunity, nanovaccines utilizing in situ antigen-capture strategies have been developed. These strategies uniquely offer personalized and targeted activation of anti-tumor immune responses. In this review, we first address the influence of the TME on DC functionality, highlighting the numerous immunosuppressive factors that restrict efficient antigen uptake by DCs. Subsequently, we detail the core mechanisms underlying in situ antigen-capturing nanovaccines (AC-NVs), including covalent, noncovalent, and combined antigen capture methods. Furthermore, recent advances in AC-NVs constructed from various biomaterials are reviewed, emphasizing their intrinsic material properties and antigen-capturing capabilities for functionalizing DCs and enhancing specific anti-tumor immunity. Finally, we discuss current challenges and future perspectives for AC-NVs, emphasizing their potential role in developing personalized cancer vaccines, optimizing immune responses, and facilitating clinical translation.
引用
收藏
页数:36
相关论文
共 309 条
[1]   Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis [J].
Adams, D. ;
Gonzalez-Duarte, A. ;
O'Riordan, W. D. ;
Yang, C. -C. ;
Ueda, M. ;
Kristen, A. V. ;
Tournev, I. ;
Schmidt, H. H. ;
Coelho, T. ;
Berk, J. L. ;
Lin, K. -P. ;
Vita, G. ;
Attarian, S. ;
Plante-Bordeneuve, V. ;
Mezei, M. M. ;
Campistol, J. M. ;
Buades, J. ;
Brannagan, T. H., III ;
Kim, B. J. ;
Oh, J. ;
Parman, Y. ;
Sekijima, Y. ;
Hawkins, P. N. ;
Solomon, S. D. ;
Polydefkis, M. ;
Dyck, P. J. ;
Gandhi, P. J. ;
Goyal, S. ;
Chen, J. ;
Strahs, A. L. ;
Nochur, S. V. ;
Sweetser, M. T. ;
Garg, P. P. ;
Vaishnaw, A. K. ;
Gollob, J. A. ;
Suhr, O. B. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (01) :11-21
[2]   Biomedical applications of mesoporous silica nanoparticles as a drug delivery carrier [J].
Ahmed, Hafiz ;
Gomte, Shyam Sudhakar ;
Prathyusha, Eluri ;
Prabakaran, A. ;
Agrawal, Mukta ;
Alexander, Amit .
JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2022, 76
[3]   A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding [J].
Akbar, Rahmad ;
Robert, Philippe A. ;
Pavlovic, Milena ;
Jeliazkov, Jeliazko R. ;
Snapkov, Igor ;
Slabodkin, Andrei ;
Weber, Cedric R. ;
Scheffer, Lonneke ;
Miho, Enkelejda ;
Haff, Ingrid Hobaek ;
Haug, Dag Trygve Tryslew ;
Lund-Johansen, Fridtjof ;
Safonova, Yana ;
Sandve, Geir K. ;
Greiff, Victor .
CELL REPORTS, 2021, 34 (11)
[4]  
Alavi M, 2017, ADV PHARM BULL, V7, P3, DOI 10.15171/apb.2017.002
[5]   A Mechanism of Resistance to Antibody-Targeted Immune Attack [J].
Aldeghaither, Dalal S. ;
Zahavi, David J. ;
Murray, Joseph C. ;
Fertig, Elana J. ;
Graham, Garrett T. ;
Zhang, Yong-Wei ;
O'Connell, Allison ;
Ma, Junfeng ;
Jablonski, Sandra A. ;
Weiner, Louis M. .
CANCER IMMUNOLOGY RESEARCH, 2019, 7 (02) :230-243
[6]   The role of lipid geometry in designing liposomes for the solubilisation of poorly water soluble drugs [J].
Ali, M. Habib ;
Moghaddam, Behfar ;
Kirby, Daniel J. ;
Mohammed, Afzal R. ;
Perrie, Yvonne .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2013, 453 (01) :225-232
[7]   Demarcating Noncovalent and Covalent Bond Territories: Imine-CO2 Complexes and Cooperative CO2 Capture [J].
Anila, Sebastian ;
Suresh, Cherumuttathu H. ;
Schaefer, Henry F., III .
JOURNAL OF PHYSICAL CHEMISTRY A, 2022, 126 (30) :4952-4961
[8]   The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy [J].
Apetoh, Lionel ;
Ghiringhelli, Francois ;
Tesniere, Antoine ;
Criollo, Alfredo ;
Ortiz, Carla ;
Lidereau, Rosette ;
Mariette, Christophe ;
Chaput, Nathalie ;
Mira, Jean-Paul ;
Delaloge, Suzette ;
Andre, Fabrice ;
Tursz, Thomas ;
Kroemer, Guido ;
Zitvogel, Laurence .
IMMUNOLOGICAL REVIEWS, 2007, 220 :47-59
[9]   Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns [J].
Bachmann, Martin F. ;
Jennings, Gary T. .
NATURE REVIEWS IMMUNOLOGY, 2010, 10 (11) :787-796
[10]   Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy [J].
Bader, Jackie E. ;
Voss, Kelsey ;
Rathmell, Jeffrey C. .
MOLECULAR CELL, 2020, 78 (06) :1019-1033