Normalized ground states for fractional energy critical Kirchhoff equations with the mass critical and supercritical perturbations

被引:0
作者
Kong, Lingzheng [1 ]
Zhu, Liyan [1 ]
Chen, Haibo [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Kirchhoff equations; Normalized solutions; Critical exponent; Combined nonlinearities; Poho & zcaron; aev manifold; POSITIVE SOLUTIONS; EXISTENCE; MULTIPLICITY; BEHAVIOR;
D O I
10.1007/s40314-025-03308-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and asymptotic behavior of normalized ground states for the nonlinear fractional energy critical Kirchhoff equation with mass critical and supercritical perturbations in RN(N=2,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>N(N=2,3)$$\end{document}. The presence of the fractional energy critical exponent in the Kirchhoff nonlocal setting makes the problem more challenging, as the underlying fractional order algebraic equation cannot be solved precisely. To address this challenge, we establish the threshold energy estimates based on the monotonicity trick and truncation technique. By combining the minimax procedure and Poho & zcaron;aev manifold decomposition, we prove the existence of the normalized ground states. Moreover, we also explore the asymptotic behavior of the normalized ground states.
引用
收藏
页数:16
相关论文
共 51 条
[1]  
Alves CO, 2022, CALC VAR PARTIAL DIF, V61, DOI 10.1007/s00526-021-02123-1
[2]   Multiple normalized solutions for a competing system of Schrodinger equations [J].
Bartsch, Thomas ;
Soave, Nicola .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)
[3]  
Caffarelli L., 2012, Non-local diffusions, drifts and games, nonlinear partial differential equations, 7, DOI [10.1007/978-3-642-25361-4, DOI 10.1007/978-3-642-25361-4]
[4]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[5]   Normalized solutions of Kirchhoff equations with critical and subcritical nonlinearities: the defocusing case [J].
Carriao, Paulo C. ;
Miyagaki, Olimpio H. ;
Vicente, Andre .
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 3 (05)
[6]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[7]   Three positive solutions for Kirchhoff problems with steep potential well and concave-convex nonlinearities [J].
Che, Guofeng ;
Wu, Tsung-fang .
APPLIED MATHEMATICS LETTERS, 2021, 121
[8]   Some remarks on non local elliptic and parabolic problems [J].
Chipot, M ;
Lovat, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (07) :4619-4627
[9]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[10]   NORMALIZED SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS WITH COMBINED NONLINEARITIES: THE SOBOLEV CRITICAL CASE [J].
Feng, Xiaojing ;
Liu, Haidong ;
Zhang, Zhitao .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, 43 (08) :2935-2972