Magnetically controlled spin light-emitting diode

被引:0
作者
Dorokhin, M. V. [1 ]
Ved', M. V. [1 ]
Demina, P. B. [1 ]
Kuznetsov, Yu. M. [1 ]
Kudrin, A. V. [1 ]
Zdoroveyshchev, A. V.
Zdoroveyshchev, D. A. [1 ]
Baidus, N. V. [1 ]
Kalentyeva, I. L. [1 ]
机构
[1] Lobachevsky State Univ, Prosp Gagarina 23, Nizhnii Novgorod 603022, Russia
基金
俄罗斯科学基金会;
关键词
spintronics; spin injection; spin transport; magnetically controlled LEDs; spin light-emitting diodes; magnetoresistive elements; GIANT MAGNETORESISTANCE; INJECTION; VALVE;
D O I
10.3367/UFNe.2025.03.039886
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The fundamental physical principles underlying the operation of basic elements of spintronics are considered, including the giant magnetoresistance effect, injection of spinpolarized charge carriers from a magnetized ferromagnetic contact, and radiative recombination in semiconductors involving spin-polarized carriers. An integrated GaAs-based structure implementing all of the above phenomena, a magnetoresistive spin light-emitting diode, has been fabricated and investigated. As an electrical circuit, the device under consideration is a magnetoresistive element and a metal/tunnel-thin dielectric/semiconductor light-emitting diode connected in series. It is shown that a magnetic field directed in the plane of the layers changes the state of the magnetoresistive element (high or low resistance) and thus allows controlling the intensity of electroluminescence. A magnetic field directed perpendicular to the plane of the layers ensures magnetization of the magnetic contact of the light-emitting diode and spin injection, accompanied by the emission of circularly polarized light. The resulting device can find itself in four stable magnetic states (high-low intensity, 'positive'-'negative' circular polarization). Such a structure can serve as a basis for magnetic recording and information transmission elements, in which four stable states form quaternary instead of binary logic.
引用
收藏
页码:512 / 524
页数:13
相关论文
共 54 条
[41]   Spin transport in Si-based spin metal-oxide-semiconductor field-effect transistors: Spin drift effect in the inversion channel and spin relaxation in the n+-Si source/drain regions [J].
Sato, Shoichi ;
Tanaka, Masaaki ;
Nakane, Ryosho .
PHYSICAL REVIEW B, 2020, 102 (03)
[42]   Multilayer spin-valve CoFeP/Cu nanowires with giant magnetoresistance [J].
Sharko, S. A. ;
Serokurova, A. I. ;
Zubar, T. I. ;
Trukhanov, S. V. ;
Tishkevich, D. I. ;
Samokhvalov, A. A. ;
Kozlovskiy, A. L. ;
Zdorovets, M. V. ;
Panina, L. V. ;
Fedosyuk, V. M. ;
Trukhanov, A. V. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 846
[43]   GIANT MAGNETO-ELECTROLUMINESCENCE FROM HYBRID SPIN-ORGANIC LIGHT EMITTING DIODES [J].
Sun, Dali ;
Basel, Tek P. ;
Gautam, Bhoj R. ;
Han, Wei ;
Jiang, Xin ;
Parkin, Stuart S. P. ;
Vardeny, Z. Valy .
SPIN, 2014, 4 (01)
[44]   Room-temperature magnetically modulated electroluminescence from hybrid organic/inorganic spintronics devices [J].
Sun, Dali ;
Basel, Tek P. ;
Gautam, Bhoj R. ;
Han, Wei ;
Jiang, Xin ;
Parkin, Stuart S. P. ;
Vardeny, Z. Valy .
APPLIED PHYSICS LETTERS, 2013, 103 (04)
[45]  
Tae L W, 2015, Patent, Patent No. [US-10636940-B2, 10636940]
[46]  
Takeshi M, 2008, Patent, Patent No. [US-4450460-A, 4450460]
[47]   Giant magnetoresistance: history, development and beyond [J].
Tian YuFeng ;
Yan ShiShen .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2013, 56 (01) :2-14
[48]   Switching of magnetoresistive light-emitting diode by external magnetic field [J].
Ved, Mikhail ;
Danilov, Yuri ;
Demina, Polina ;
Dorokhin, Mikhail ;
Dudin, Yuri ;
Kotomina, Valentina ;
Kudrin, Alexey ;
Kuznetsov, Yuri ;
Zdoroveyshchev, Anton ;
Zdoroveyshchev, Daniil .
APPLIED PHYSICS LETTERS, 2021, 118 (09)
[49]  
Xuan R, 2009, Patent, Patent No. [WO2009089739A1, 2009089739]
[50]   Revolutionizing Technology with Spintronics: Devices and Their Transformative Applications [J].
Yadav, Manoj Kumar ;
Kumar, Ramesh ;
Ratnesh, Ratneshwar Kumar ;
Singh, Jay ;
Chandra, Ramesh ;
Kumar, Abhishek ;
Vishnoi, Vishal ;
Singh, Gajendra ;
Singh, Ashish Kumar .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2024, 303