Investigation of Structural, Elastic, Electronic, and Thermodynamic Properties of CaXH3 (X = Ti, V) for Hydrogen Storage Applications

被引:0
作者
Ksouri, R. [1 ]
Djaghout, I. [2 ]
Derdare, M. [3 ]
Mezari, Y. [1 ]
Merdes, R. [1 ]
Boudjahem, A. -g. [3 ]
机构
[1] Univ Guelma, Lab Appl Chem, Physicochem Properties Nanomat Grp, Box 401, Guelma 24000, Algeria
[2] Mohamed Cher Massaadia Univ, Souk Ahras 41000, Algeria
[3] Univ Guelma, Lab Appl Chem, Computat Catalysis Grp, Box 401, Guelma 24000, Algeria
关键词
DFT; structure; elastic; electronic; thermodynamic properties; hydrogen storage; EQUATIONS; PRESSURE; HYDRIDES; CS; RB; CU;
D O I
10.1134/S0036024425700967
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this manuscript, we have studied the structural, elastic, electronic and thermodynamic properties of CaXH3 (X = Ti, V) for hydrogen storage applications using DFT calculations. The generalized gradient approximation in the Perdew-Burke-Ernzerhof (PBE) form is used in this work to investigate the properties of the above compounds. The calculated optimized lattice constants are 3.8185 and 3.7163 & Aring; for CaTiH3 and CaVH3, respectively. The thermodynamic stability for the studied compounds is confirmed by the negative formation energy calculations. The elastic properties results show good mechanical stability. The phonon spectra calculation confirms the dynamical stability of the compound CaVH3. The determined band structure and density of states (DOS) profiles indicate the metallic nature for these compounds. Additionally, CaTiH3 and CaVH3 exhibit brittle behavior, as evidenced by both calculated Pugh's and Poisson's ratios. The specific heat capacities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{C}_{V}}$$\end{document}, thermal expansion coefficients \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and Debye temperature \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} were also investigated and discussed in detail. The obtained values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} were found to be 590.174 K for CaTiH3 and 644.342 K for CaVH3. The hydrogen storage capacity is found 3.217 and 3.115% for CaTiH3 and CaVH3, respectively. Furthermore, the hydrogen desorption temperatures obtained are 393.85 K for CaTiH3 and 358.28 K for CaVH3, both of which fall within the recommended decomposition temperature range of 298-473 K.
引用
收藏
页码:1585 / 1593
页数:9
相关论文
共 46 条
[1]   First principles calculations of structural, electronic, mechanical and thermoelectric properties of cubic ATiO3 (A= Be, Mg, Ca, Sr and Ba) perovskite oxide [J].
Adewale, Akeem Adekunle ;
Chik, Abdullah ;
Adam, Tijjani ;
Yusuff, Olaniyi Kamil ;
Ayinde, Sabur Abiodun ;
Sanusi, Yekinni Kolawole .
COMPUTATIONAL CONDENSED MATTER, 2021, 28
[2]   First-principles screening of structural, electronic, optical and elastic properties of Cu-based hydrides-perovskites XCuH3 (X=Ca and Sr) for hydrogen storage applications [J].
Ahmed, Bilal ;
Tahir, Muhammad Bilal ;
Ali, Akmal ;
Sagir, Muhammad .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 54 :1001-1007
[3]   High-Level Penetration of Renewable Energy Sources Into Grid Utility: Challenges and Solutions [J].
Alam, Md Shafiul ;
Al-Ismail, Fahad Saleh ;
Salem, Aboubakr ;
Abido, Mohammad A. .
IEEE ACCESS, 2020, 8 :190277-190299
[4]  
[Anonymous], About us
[5]  
Ashish P. R., 2024, AIP Conf. Proc, V2978, P1
[6]   DFT-based first-principles calculations of new NaXH3 (X = Ti, Cu) hydride compounds for hydrogen storage applications [J].
Bahhar, S. ;
Tahiri, A. ;
Jabar, A. ;
Louzazni, M. ;
Idiri, M. ;
Bioud, H. .
COMPUTATIONAL MATERIALS SCIENCE, 2024, 238
[7]   Characteristics of imbibition in tight oil reservoirs from the perspective of physical experiments and theory [J].
Cao, Renyi ;
Wu, Zhiyu ;
Liang, Xiaowei ;
Cheng, Linsong ;
Xu, Zhongyi ;
Guan, Yun ;
Guo, Zhuoliang ;
Jia, Zhihao .
ENERGY SCIENCE & ENGINEERING, 2020, 8 (10) :3531-3543
[8]  
Chang Y., 2022, Mater. Sci. Eng. R, V158, P29, DOI [10.1016/j.mser.2022.02.005, DOI 10.1016/J.MSER.2022.02.005]
[9]  
Corbo P, 2011, GREEN ENERGY TECHNOL, P1, DOI 10.1007/978-0-85729-136-3
[10]   A DFT study for physical properties and hydrogen storage capability of indium-based hydride perovskites XInH3 (X = Li, K) for hydrogen storage application [J].
Deen, Shabana Mehar ;
Usman, Muhammad ;
Rehman, Jalil Ur ;
Ali, Syed Mansoor ;
Ali, Mubasher .
SOLID STATE COMMUNICATIONS, 2024, 384