Constructions of Self-Orthogonal Linear Codes and Dual-Containing BCH Codes

被引:1
作者
Xie, Conghui [1 ]
Chen, Hao [1 ]
Li, Chengju [2 ]
Mesnager, Sihem [3 ,4 ,5 ]
机构
[1] Jinan Univ, Coll Informat Sci & Technol, Cyber Secur, Guangzhou 510632, Guangdong, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200062, Peoples R China
[3] Univ Paris 08, Dept Math, F-93526 St Denis, France
[4] Sorbonne Paris Cite Univ, Lab Anal Geometry & Applicat LAGA, UMR 7539, CNRS, F-93430 Villetaneuse, France
[5] Polytech Inst Paris, Telecom Paris, F-91120 Palaiseau, France
基金
中国国家自然科学基金;
关键词
Codes; Linear codes; Liquid crystal displays; Zinc; Vectors; Hamming distances; Polynomials; Galois fields; Hamming weight; Training; Linear code; cyclic code; BCH code; self-orthogonal code; dual-containing code; 3-WEIGHT CODES; LCD CODES; DISTANCE; 2-WEIGHT; GEOMETRY; HULLS;
D O I
10.1109/TIT.2025.3565708
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Self-orthogonal and dual-containing codes are two important subclasses of linear codes in coding theory and have been studied for many years. In this paper, we present several sufficient conditions for self-orthogonal or dual-containing codes when a linear code, cyclic code or BCH code C is transformed to an equivalent code v & sdot;C . Specifically, we prove that linear codes are equivalent to Euclidean or Hermitian self-orthogonal codes if the dimension is very small. For primitive BCH codes, we prove that when designed distances are small, equivalent Euclidean dual-containing codes always exist. From our method presented in this paper, many self-orthogonal or dual-containing linear, cyclic or BCH codes with good parameters can be constructed explicitly. We also construct some Euclidean dual-containing binary BCH codes with best-known parameters.
引用
收藏
页码:5049 / 5062
页数:14
相关论文
共 54 条
[1]   On quantum and classical BCH codes [J].
Aly, Salah A. ;
Klappenecker, Andreas ;
Sarvepalli, Pradeep Kiran .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (03) :1183-1188
[2]   Relative Hulls and Quantum Codes [J].
Anderson, Sarah E. ;
Camps-Moreno, Eduardo ;
Lopez, Hiram H. ;
Matthews, Gretchen L. ;
Ruano, Diego ;
Soprunov, Ivan .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (05) :3190-3201
[3]  
Bodur S, 2023, PROC INT WORKSHOP A, V13638, P194
[4]  
Bose R. C., 1960, Control, V3, P79
[5]  
Bose R. C., 1960, Control, V3, P279
[6]  
Bouyukliev I., 2003, Combinat. Math. Combinat. Comput., V59, P1
[7]  
CALDERBANK AR, 1984, PHILIPS J RES, V39, P143
[8]   THE GEOMETRY OF 2-WEIGHT CODES [J].
CALDERBANK, R ;
KANTOR, WM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :97-122
[9]   Linear codes with small hulls in semi-primitive case [J].
Carlet, Claude ;
Li, Chengju ;
Mesnager, Sihem .
DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (12) :3063-3075
[10]   Linear Codes Over Fq Are Equivalent to LCD Codes for q > 3 [J].
Carlet, Claude ;
Mesnager, Sihem ;
Tang, Chunming ;
Qi, Yanfeng ;
Pellikaan, Ruud .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) :3010-3017