LARGE LANGUAGE MODEL BASED GENERATIVE ERROR CORRECTION: A CHALLENGE AND BASELINES FOR SPEECH RECOGNITION, SPEAKER TAGGING, AND EMOTION RECOGNITION

被引:1
作者
Yang, Chao-Han Huck [1 ]
Park, Taejin [1 ]
Gong, Yuan [2 ]
Li, Yuanchao [3 ]
Chen, Zhehuai [1 ]
Lin, Yen-Ting [4 ]
Chen, Chen [5 ]
Hu, Yuchen [5 ]
Dhawan, Kunal [1 ]
Zelasko, Piotr [1 ]
Zhang, Chao [6 ]
Chen, Yun-Nung [4 ]
Tsao, Yu [7 ]
Balam, Jagadeesh [1 ]
Ginsburg, Boris [1 ]
Siniscalchi, Sabato Marco [8 ]
Chng, Eng Siong [5 ]
Bell, Peter [3 ]
Lai, Catherine [3 ]
Watanabe, Shinji [9 ]
Stolcke, Andreas [10 ]
机构
[1] NVIDIA, Santa Clara, CA 95051 USA
[2] MIT CSAIL, Cambridge, MA USA
[3] Univ Edinburgh, Edinburgh, Midlothian, Scotland
[4] Natl Taiwan Univ, Taipei, Taiwan
[5] Nanyang Technol Univ, Singapore, Singapore
[6] Tsinghua Univ, Beijing, Peoples R China
[7] Acad Sinica, Taipei, Taiwan
[8] Univ Palermo, Palermo, Italy
[9] CMU, Pittsburgh, PA USA
[10] Uniphore, Nottingham, England
来源
2024 IEEE SPOKEN LANGUAGE TECHNOLOGY WORKSHOP, SLT | 2024年
关键词
Language modeling; speech recognition; postprocessing; speaker tagging; speech emotion recognition;
D O I
10.1109/SLT61566.2024.10832176
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Given recent advances in generative AI technology, a key question is how large language models (LLMs) can enhance acoustic modeling tasks using text decoding results from a frozen, pretrained automatic speech recognition (ASR) model. To explore new capabilities in language modeling for speech processing, we introduce the generative speech transcription error correction (GenSEC) challenge. This challenge comprises three post-ASR language modeling tasks: (i) post-ASR transcription correction, (ii) speaker tagging, and (iii) emotion recognition. These tasks aim to emulate future LLM-based agents handling voice-based interfaces while remaining accessible to a broad audience by utilizing open pretrained language models or agent-based APIs. We also discuss insights from baseline evaluations, as well as lessons learned for designing future evaluations.
引用
收藏
页码:371 / 378
页数:8
相关论文
共 56 条
[1]  
Aksenova Alena, 2021, 1 WORKSH BENCHM PRES
[2]  
Ang Jeremy., 2002, INTERSPEECH
[3]  
Arisoy Ebru, 2015, ICASSP
[4]  
Boulianne D., 2011, IEEE 2011 WORKSH AUT, P1, DOI DOI 10.1017/CBO9781107415324.004
[5]  
Brandschain Linda, 2010, P LREC
[6]  
Busso Carlos, 2008, LREC
[7]  
Canseco Leonardo, 2005, ASRU
[8]  
Canseco-Rodriguez Leonardo, 2004, ICSLP
[9]  
Carletta J, 2005, LECT NOTES COMPUT SC, V3869, P28
[10]  
Chan David, 2023, EMNLP