DISENTANGLING VEGETATION WATER CONTENT AND SURFACE SOIL MOISTURE FROM SENTINEL-1 SAR TIME SERIES THROUGH ASYNCHRONOUS CONVOLUTIONAL NEURAL NETWORK

被引:0
作者
Shi, Changjiang [1 ,2 ,3 ]
Zhang, Zhijie [4 ]
Wang, Baohui [5 ]
Zhang, Wanchang [1 ,2 ]
Yi, Yaning [6 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Utah State Univ, Quinney Coll Nat Resources, Dept Environm & Soc, Logan, UT 84322 USA
[5] Beihang Univ, Sch Software, Beijing 100191, Peoples R China
[6] Minist Emergency Management China, Natl Inst Nat Hazards, Beijing 100085, Peoples R China
来源
IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024 | 2024年
关键词
Soil Moisture Retrieval; Vegetation Water Content Retrieval; Signal Separation; SAR Time Serial; Deep Learning; RETRIEVAL;
D O I
10.1109/IGARSS53475.2024.10642855
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This paper introduces and assesses an algorithm tailored for the discrimination of Vegetation Water Content (VWC) and Surface Soil Moisture (SM) using time series data acquired from the Sentinel-1 Synthetic Aperture Radar (SAR). The backscatter signals captured from the Earth's surface encompass contributions from both soil surface scattering and multiple interactions involving both the soil surface and canopy constituents. The conventional water cloud model encounters challenges in soil moisture retrieval due to the intricate interplay of moisture in both vegetation and soil, rendering direct retrieval from the backscatter coefficient a complex task. Employing the principle of blind signal separation, we deploy an asynchronous convolutional neural network to distinctively retrieve vegetation water and soil moisture from the Sentinel-1 SAR VV polarization backscatter time series. Our findings validated at OzNet network reveal an unbiased Root Mean Square Error (RMSE) of 0.054 m(3)/m(3) for soil moisture retrieval, with the accuracy of vegetation water content closely aligning with SMAP auxiliary VWC data.
引用
收藏
页码:1474 / 1477
页数:4
相关论文
共 10 条
[1]   Dense Temporal Series of C- and L-band SAR Data for Soil Moisture Retrieval Over Agricultural Crops [J].
Balenzano, Anna ;
Mattia, Francesco ;
Satalino, Giuseppe ;
Davidson, Malcolm W. J. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2011, 4 (02) :439-450
[2]   Asynchronous Convolutional Networks for Object Detection in Neuromorphic Cameras [J].
Cannici, Marco ;
Ciccone, Marco ;
Romanoni, Andrea ;
Matteucci, Matteo .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, :1656-1665
[3]   Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications [J].
Kornelsen, Kurt C. ;
Coulibaly, Paulin .
JOURNAL OF HYDROLOGY, 2013, 476 :460-489
[4]  
Long D., 2015, Microwave radar and radiometric remote sensing
[5]   Soil moisture estimation over vegetated terrains using multitemporal remote sensing data [J].
Pierdicca, Nazzareno ;
Pulvirenti, Luca ;
Bignami, Christian .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (02) :440-448
[6]   The Murrumbidgee soil moisture monitoring network data set [J].
Smith, A. B. ;
Walker, J. P. ;
Western, A. W. ;
Young, R. I. ;
Ellett, K. M. ;
Pipunic, R. C. ;
Grayson, R. B. ;
Siriwardena, L. ;
Chiew, F. H. S. ;
Richter, H. .
WATER RESOURCES RESEARCH, 2012, 48
[7]   A method for estimating soil moisture from ERS scatterometer and soil data [J].
Wagner, W ;
Lemoine, G ;
Rott, H .
REMOTE SENSING OF ENVIRONMENT, 1999, 70 (02) :191-207
[8]   Combining Spectral and Spatial Features for Deep Learning Based Blind Speaker Separation [J].
Wang, Zhong-Qiu ;
Wang, DeLiang .
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2019, 27 (02) :457-468
[9]  
Zhu L., 2023, REMOTE SENSING ENV
[10]   Stochastic ensemble methods for multi-SAR-mission soil moisture retrieval [J].
Zhu, Liujun ;
Walker, Jeffrey P. ;
Shen, Xiaoji .
REMOTE SENSING OF ENVIRONMENT, 2020, 251