Kink solutions in nonlocal scalar field theory models

被引:0
作者
Andrade, I. [1 ]
Menezes, R. [2 ,3 ]
Petrov, A. Yu. [1 ]
Porfirio, P. J. [1 ]
机构
[1] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, PB, Brazil
[2] Univ Fed Paraiba, Dept Ciencias Exatas, BR-58297000 Rio Tinto, PB, Brazil
[3] Univ Fed Campina Grande, Dept Fis, BR-58109970 Campina Grande, PB, Brazil
关键词
Nonlocal field theory; Exact solutions; Scalar field theory; GRAVITY; RENORMALIZATION;
D O I
10.1016/j.aop.2025.170028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study in detail various solutions, especially kink ones, in different nonlocal scalar field theories, whose kinetic term is described by an arbitrary non-polynomial analytic function of the d'Alembertian operator, and the potential is chosen either to be quadratic or to allow for the kink-like solution. Using the perturbative method, we find corrections of first and second orders in the nonlocality parameter around local solutions for several form factors and generate analytic expressions for the energy density up to the first order in this parameter. Additionally, we also address an inverse problem, that is, we reconstruct the potential corresponding to the given solution obtaining restrictions for the form factor.
引用
收藏
页数:14
相关论文
共 74 条
[11]   First order formalism for generalized vortices [J].
Bazeia, D. ;
Losano, L. ;
Marques, M. A. ;
Menezes, R. ;
Zafalan, I .
NUCLEAR PHYSICS B, 2018, 934 :212-239
[12]   Braneworld models of scalar fields with generalized dynamics [J].
Bazeia, D. ;
Gomes, A. R. ;
Losano, L. ;
Menezes, R. .
PHYSICS LETTERS B, 2009, 671 (03) :402-410
[13]   One-loop effective potential in nonlocal supersymmetric theories [J].
Bezerra de Mello, E. R. ;
Gama, F. S. ;
Nascimento, J. R. ;
Petrov, A. Yu. .
PHYSICAL REVIEW D, 2017, 95 (02)
[14]   Stable bounce and inflation in non-local higher derivative cosmology [J].
Biswas, Tirthabir ;
Koshelev, Alexey S. ;
Mazumdar, Anupam ;
Vernov, Sergey Yu. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2012, (08)
[15]   Towards Singularity- and Ghost-Free Theories of Gravity [J].
Biswas, Tirthabir ;
Gerwick, Erik ;
Koivisto, Tomi ;
Mazumdar, Anupam .
PHYSICAL REVIEW LETTERS, 2012, 108 (03)
[16]   Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity [J].
Biswas, Tirthabir ;
Koivisto, Tomi ;
Mazumdar, Anupam .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2010, (11)
[17]   Kinks in higher-order polynomial models [J].
Blinov, Petr A. ;
Gani, Tatiana V. ;
Malnev, Alexander A. ;
Gani, Vakhid A. ;
Sherstyukov, Vladimir B. .
CHAOS SOLITONS & FRACTALS, 2022, 165
[18]   One-loop effective potential in nonlocal scalar field models [J].
Briscese, F. ;
Bezerra de Mello, E. R. ;
Petrov, A. Yu. ;
Bezerra, V. B. .
PHYSICAL REVIEW D, 2015, 92 (10)
[19]   Form factors, spectral and Källén-Lehmann representation in nonlocal quantum gravity [J].
Briscese, Fabio ;
Calcagni, Gianluca ;
Modesto, Leonardo ;
Nardelli, Giuseppe .
JOURNAL OF HIGH ENERGY PHYSICS, 2024, (08)
[20]   Super-renormalizable or finite completion of the Starobinsky theory [J].
Briscese, Fabio ;
Modesto, Leonardo ;
Tsujikawa, Shinji .
PHYSICAL REVIEW D, 2014, 89 (02)