Kink solutions in nonlocal scalar field theory models

被引:0
作者
Andrade, I. [1 ]
Menezes, R. [2 ,3 ]
Petrov, A. Yu. [1 ]
Porfirio, P. J. [1 ]
机构
[1] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, PB, Brazil
[2] Univ Fed Paraiba, Dept Ciencias Exatas, BR-58297000 Rio Tinto, PB, Brazil
[3] Univ Fed Campina Grande, Dept Fis, BR-58109970 Campina Grande, PB, Brazil
关键词
Nonlocal field theory; Exact solutions; Scalar field theory; GRAVITY; RENORMALIZATION;
D O I
10.1016/j.aop.2025.170028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study in detail various solutions, especially kink ones, in different nonlocal scalar field theories, whose kinetic term is described by an arbitrary non-polynomial analytic function of the d'Alembertian operator, and the potential is chosen either to be quadratic or to allow for the kink-like solution. Using the perturbative method, we find corrections of first and second orders in the nonlocality parameter around local solutions for several form factors and generate analytic expressions for the energy density up to the first order in this parameter. Additionally, we also address an inverse problem, that is, we reconstruct the potential corresponding to the given solution obtaining restrictions for the form factor.
引用
收藏
页数:14
相关论文
共 74 条
[1]   Wobbling kinks and shape mode interactions in a coupled two-component Φ4 theory [J].
Alonso-Izquierdo, A. ;
Miguelez-Caballero, D. ;
Nieto, L. M. .
CHAOS SOLITONS & FRACTALS, 2024, 178
[2]   Spatially localized scalar structures on hyperscaling violating geometries [J].
Andrade, I. ;
Marques, M. A. ;
Menezes, R. ;
Moreira, D. C. .
NUCLEAR PHYSICS B, 2024, 1005
[3]   Flat and bent branes in Born-Infeld-like scalar field models [J].
Andrade, I. ;
Marques, M. A. ;
Menezes, R. .
EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (01)
[4]   Maxwell-scalar system and scalar field with impurity: Novel approach to find nontrivial solutions [J].
Andrade, I. ;
Bazeia, D. ;
Marques, M. A. ;
Menezes, R. .
CHAOS SOLITONS & FRACTALS, 2023, 176
[5]   Vortices in Maxwell-Chern-Simons-Higgs models with nonminimal coupling [J].
Andrade, I ;
Bazeia, D. ;
Marques, M. A. ;
Menezes, R. .
PHYSICAL REVIEW D, 2020, 102 (04)
[6]  
[Anonymous], 2004, TOPOLOGICAL SOLITONS, DOI [10.1017/cbo9780511617034, DOI 10.1017/CBO9780511617034]
[7]   Dark energy and dark matter from nonlocal ghost-free gravity theory [J].
Barvinsky, A. O. .
PHYSICS LETTERS B, 2012, 710 (01) :12-16
[8]   Serendipitous discoveries in nonlocal gravity theory [J].
Barvinsky, A. O. .
PHYSICAL REVIEW D, 2012, 85 (10)
[9]  
Bas i Beneito A., arXiv
[10]   Generalized global defect solutions [J].
Bazeia, D. ;
Losano, L. ;
Menezes, R. ;
Oliveira, J. C. R. E. .
EUROPEAN PHYSICAL JOURNAL C, 2007, 51 (04) :953-962