Explainable artificial intelligence for stroke risk stratification in atrial fibrillation

被引:1
作者
Zimmerman, Raquel Mae [1 ]
Hernandez, Edgar J. [2 ,3 ]
Tristani-Firouzi, Martin [4 ]
Yandell, Mark [2 ,3 ]
Steinberg, Benjamin A. [5 ]
机构
[1] Univ Utah, Dept Biomed Informat, Salt Lake City, UT USA
[2] Univ Utah, Dept Human Genet, Salt Lake City, UT USA
[3] Univ Utah, Utah Ctr Genet Discovery, Salt Lake City, UT USA
[4] Univ Utah, Dept Pediat, Salt Lake City, UT USA
[5] Univ Utah, Dept Med, 30 North 1900 East,Room 4A100, Salt Lake City, UT 84112 USA
来源
EUROPEAN HEART JOURNAL - DIGITAL HEALTH | 2025年 / 6卷 / 03期
基金
美国国家卫生研究院;
关键词
Atrial fibrillation; Stroke; Machine learning; Artificial intelligence; Probabilistic graphical model; FEMALE SEX; HEALTH;
D O I
10.1093/ehjdh/ztaf019
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Current risk stratification tools can limit the optimal implementation of new and emerging therapies for patients with heart rhythm disorders. For example, stroke prevention treatments have outpaced means for stroke risk stratification for patients with atrial fibrillation (AF). Artificial intelligence (AI) techniques have shown promise for improving various tasks in cardiovascular medicine. Here, we explain key concepts in AI that are central to using these technologies for better risk stratification, highlighting one approach particularly well suited to the task of portable, personalized risk stratification-probabilistic graphical models (PGMs). Probabilistic graphical models can empower physicians to ask and answer a variety of clinical questions, which we demonstrate using a preliminary model of AF-related stroke risk among 1.6 million patients within the University of Utah Health System. This example also highlights the ability of PGMs to combine social determinants of health and other non-traditional variables with standard clinical and demographic ones to improve personalized risk predictions and address risk factor interactions. When combined with electronic health data, these computational technologies hold great promise to empower personalized, explainable, and equitable risk assessment.
引用
收藏
页码:317 / 325
页数:9
相关论文
共 48 条
[1]   A clinician's guide to understanding and critically appraising machine learning studies: a checklist for Ruling Out Bias Using Standard Tools in Machine Learning (ROBUST-ML) [J].
Al-Zaiti, Salah S. ;
Alghwiri, Alaa A. ;
Hu, Xiao ;
Clermont, Gilles ;
Peace, Aaron ;
Macfarlane, Peter ;
Bond, Raymond .
EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2022, 3 (02) :125-140
[2]  
Boriani G., 2024, EUROPACE, V26, peuae281
[3]   Stroke risk in women with atrial fibrillation [J].
Buhari, Hifza ;
Fang, Jiming ;
Han, Lu ;
Austin, Peter C. ;
Dorian, Paul ;
Jackevicius, Cynthia A. ;
Yu, Amy Y. X. ;
Kapral, Moira K. ;
Singh, Sheldon M. ;
Tu, Karen ;
Ko, Dennis T. ;
Atzema, Clare L. ;
Benjamin, Emelia J. ;
Lee, Douglas S. ;
Abdel-Qadir, Husam .
EUROPEAN HEART JOURNAL, 2024, 45 (02) :104-113
[4]   The NCDR Left Atrial Appendage Occlusion Registry [J].
Freeman, James, V ;
Varosy, Paul ;
Price, Matthew J. ;
Slotwiner, David ;
Kusumoto, Fred M. ;
Rammohan, Chidambaram ;
Kavinsky, Clifford J. ;
Turi, Zoltan G. ;
Akar, Joseph ;
Koutras, Cristina ;
Curtis, Jeptha P. ;
Masoudi, Frederick A. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (13) :1503-1518
[5]   Assessment of female sex as a risk factor in atrial fibrillation in Sweden: nationwide retrospective cohort study [J].
Friberg, Leif ;
Benson, Lina ;
Rosenqvist, Marten ;
Lip, Gregory Y. H. .
BMJ-BRITISH MEDICAL JOURNAL, 2012, 344
[6]   Early warning of atrial fibrillation using deep learning [J].
Gavidia, Marino ;
Zhu, Hongling ;
Montanari, Arthur N. ;
Fuentes, Jesus ;
Cheng, Cheng ;
Dubner, Sergio ;
Chames, Martin ;
Maison-Blanche, Pierre ;
Rahman, Md Moklesur ;
Sassi, Roberto ;
Badilini, Fabio ;
Jiang, Yinuo ;
Zhang, Shengjun ;
Zhang, Hai-Tao ;
Du, Hao ;
Teng, Basi ;
Yuan, Ye ;
Wan, Guohua ;
Tang, Zhouping ;
He, Xin ;
Yang, Xiaoyun ;
Goncalves, Jorge .
PATTERNS, 2024, 5 (06)
[7]   Atrial Fibrillation Burden Signature and Near-Term Prediction of Stroke A Machine Learning Analysis [J].
Han, Lichy ;
Askari, Mariam ;
Altman, Russ B. ;
Schmitt, Susan K. ;
Fan, Jun ;
Bentley, Jason P. ;
Narayan, Sanjiv M. ;
Turakhia, Mintu P. .
CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2019, 12 (10)
[8]   Innovations in Genomics and Big Data Analytics for Personalized Medicine and Health Care: A Review [J].
Hassan, Mubashir ;
Awan, Faryal Mehwish ;
Naz, Anam ;
deAndres-Galiana, Enrique J. ;
Alvarez, Oscar ;
Cernea, Ana ;
Fernandez-Brillet, Lucas ;
Fernandez-Martinez, Juan Luis ;
Kloczkowski, Andrzej .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
[9]  
Heckerman D., 2013, ARXIV, DOI DOI 10.48550/ARXIV.1302.6815
[10]  
Hindricks G, 2021, EUR HEART J, V42, P546, DOI [10.1093/eurheartj/ehaa945, 10.1093/eurheartj/ehaa612]