Optimizing shape from polarization using Fourier light field microscopy depth

被引:0
作者
Cai, Mingfeng [1 ]
Wu, Qiong [2 ]
Li, Chenrui [1 ]
Zhang, Yanzheng [1 ]
Tian, Yuexin [3 ]
Gao, Kun [1 ]
机构
[1] Beijing Inst Technol, Key Lab Photoelect Imaging Technol & Syst, Minist Educ China, Beijing 100081, Peoples R China
[2] China Ordinance Ind Nav & Control Technol Res Ins, Beijing 100089, Peoples R China
[3] Southern Univ Sci & Technol, Shenzhen 518055, Peoples R China
来源
AOPC 2024: COMPUTATIONAL IMAGING TECHNOLOGY | 2025年 / 13501卷
基金
中国国家自然科学基金;
关键词
Shape from polarization; Fourier light field microscopy; 3D reconstruction; DECONVOLUTION;
D O I
10.1117/12.3047992
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Shape from Polarization (SFP) is a three-dimensional (3D) reconstruction technique that leverages the polarization properties of light to derive surface morphology. Its capabilities in non-destructive inspection make it particularly valuable in microscopy applications. However, SFP encounters challenges such as normal azimuth ambiguity and depth uncertainty. To address these issues, this paper proposes an optimized scheme that utilizes depth information from Fourier light field microscopy (FLFM) to assist in the reconstruction of SFP. We have developed a dual-optical-path FLFM-polarization microscope system that concurrently captures high-resolution polarization images and Fourier light field images containing spatial-angular information. By employing depth information derived from FLFM, we corrected ambiguous azimuth angles and optimized the SFP results through a variational reconstruction model incorporating depth and projection constraints. Quantitative assessments using mean absolute error (MAE) and structural similarity metrics (SSIM) on FLFM-assisted SFP reconstructions of polystyrene microspheres, validated against atomic force microscopy 3D measurements, confirmed significant enhancements in reconstruction accuracy.
引用
收藏
页数:7
相关论文
共 18 条
[1]   Model-based 2.5-d deconvolution for extended depth of field in brightfield microscopy [J].
Aguet, Francois ;
De Ville, Dimitri Van ;
Unser, Michael .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (07) :1144-1153
[2]   Shape estimation using polarization and shading from two views [J].
Atkinson, Gary A. ;
Hancock, Edwin R. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (11) :2001-2017
[3]  
Bregman LM., 1967, USSR COMP MATH MATH, V7, P200, DOI [10.1016/0041-5553(67)90040-7, DOI 10.1016/0041-5553(67)90040-7]
[4]   A model-based deconvolution approach to solve fiber crossing in diffusion-weighted MR imaging [J].
Dell'Acqua, Flavio ;
Rizzo, Giovanna ;
Scifo, Paola ;
Clarke, Rafael Alonso ;
Scotti, Giuseppe ;
Fazio, Ferruccio .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (03) :462-472
[5]   A METHOD FOR ENFORCING INTEGRABILITY IN SHAPE FROM SHADING ALGORITHMS [J].
FRANKOT, RT ;
CHELLAPPA, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1988, 10 (04) :439-451
[6]   Fourier light-field microscopy [J].
Guo, Changliang ;
Liu, Wenhao ;
Hua, Xuanwen ;
Li, Haoyu ;
Jia, Shu .
OPTICS EXPRESS, 2019, 27 (18) :25573-25594
[7]  
Hua XW, 2021, OPTICA, V8, P614, DOI [10.1364/optica.419236, 10.1364/OPTICA.419236]
[8]   Polarization 3D imaging technology: a review [J].
Li, Xuan ;
Liu, Zhiqiang ;
Cai, Yudong ;
Pan, Cunying ;
Song, Jiawei ;
Wang, Jinshou ;
Shao, Xiaopeng .
FRONTIERS IN PHYSICS, 2023, 11
[9]   Fusion-based high-quality polarization 3D reconstruction [J].
Liu, Rui ;
Liang, Hao ;
Wang, Zhongyuan ;
Ma, Jiayi ;
Tian, Xin .
OPTICS AND LASERS IN ENGINEERING, 2023, 162
[10]  
Mao Y., 2022, IEEE Photonics Journal, V15, P1