Precision Agriculture: Integrating Sensors for Weed Detection using Machine Learning in Agriculture Fields

被引:0
作者
Ahsen, Rameez [1 ]
Di Bitonto, Pierpaolo [1 ]
De Trizio, Lorenzo [1 ]
Magarelli, Michele [1 ]
Romano, Donato [1 ]
Novielli, Pierfrancesco [1 ]
Diacono, Domenico [2 ]
Tangaro, Sabina [1 ]
Bellotti, Roberto [3 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Scienze Suolo Pianta & Alimenti, Bari, Italy
[2] Univ Bari Aldo Moro, Ist Nazl Fis Nucleare Sezione Bari, Bari, Italy
[3] Univ Bari Aldo Moro, Dipartimento Interateneo Fis M Merlin, Bari, Italy
来源
2024 IEEE INTERNATIONAL HUMANITARIAN TECHNOLOGIES CONFERENCE, IHTC | 2024年
关键词
weed detection; Sensors; Machine learning; RGB; Multispectral; Hyperspectral; Thermal LiDAR; Fluorescence; Ultrasonic; CLASSIFICATION; SYSTEM;
D O I
10.1109/IHTC61819.2024.10855041
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Weed control is a critical challenge in agriculture, impacting crop yields and necessitating various management strategies, from manual to chemical methods. This paper explores the integration of advanced sensor technologies with machine learning for weed detection and management. Our study discusses the application of multiple sensors RGB, multispectral, hyperspectral, thermal, LiDAR, fluorescence, and ultrasonic each providing unique advantages in detecting and differentiating weeds from crops based on spectral, thermal, and structural characteristics. We delve into the capabilities of each sensor type, underlining their individual and combined utility in addressing the complexities of agricultural environments, such as varying lighting conditions, soil types, and crop stages. This review highlights the potential of ML algorithms to refine the data processing and enhance the accuracy of weed identification systems. Our findings indicate that while these technologies offer significant improvements in detecting and managing weeds, challenges remain in their adoption, particularly among small-scale farmers due to system complexity and cost.
引用
收藏
页数:7
相关论文
共 63 条
[1]   Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry [J].
Adao, Telmo ;
Hruska, Jonas ;
Padua, Luis ;
Bessa, Jose ;
Peres, Emanuel ;
Morais, Raul ;
Sousa, Joaquim Joao .
REMOTE SENSING, 2017, 9 (11)
[2]   A comprehensive survey on weed and crop classi fi cation using machine learning and deep learning [J].
Adhinata, Faisal Dharma ;
Wahyono ;
Sumiharto, Raden .
ARTIFICIAL INTELLIGENCE IN AGRICULTURE, 2024, 13 :45-63
[3]  
Aguera-Vega F., 2021, Measurement (Lond), V175
[4]  
Alexandridis al T. K., 2017, Sensors (Switzerland), V17
[5]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[6]   Potential of a terrestrial LiDAR-based system to characterise weed vegetation in maize crops [J].
Andujar, Dionisio ;
Escola, Alexandre ;
Rosell-Polo, Joan R. ;
Fernandez-Quintanilla, Cesar ;
Dorado, Jose .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2013, 92 :11-15
[7]   An Ultrasonic System for Weed Detection in Cereal Crops [J].
Andujar, Dionisio ;
Weis, Martin ;
Gerhards, Roland .
SENSORS, 2012, 12 (12) :17343-17357
[8]   Deep Learning for Classification of Hyperspectral Data [J].
Audebert, Nicolas ;
Le Saux, Bertrand ;
Lefevre, Sebastien .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2019, 7 (02) :159-173
[9]   Drone-Based Identification and Monitoring of Two Invasive Alien Plant Species in Open Sand Grasslands by Six RGB Vegetation Indices [J].
Bakacsy, Laszlo ;
Tobak, Zalan ;
van Leeuwen, Boudewijn ;
Szilassi, Peter ;
Biro, Csaba ;
Szatmari, Jozsef .
DRONES, 2023, 7 (03)
[10]   Weed Detection and Mapping of a Coffee Farm by a Remotely Piloted Aircraft System [J].
Bento, Nicole Lopes ;
Ferraz, Gabriel Araujo e Silva ;
Amorim, Jhones da Silva ;
Santana, Lucas Santos ;
Barata, Rafael Alexandre Pena ;
Soares, Daniel Veiga ;
Ferraz, Patricia Ferreira Ponciano .
AGRONOMY-BASEL, 2023, 13 (03)