An Image-to-image Target Reconstruction Network for Capacitively Coupled Electrical Resistance Tomography Based on Transfer Learning

被引:0
作者
Luo, Chunfen [1 ]
Jiang, Yandan [2 ]
机构
[1] Vivo Mobile Commun Co Ltd, Hangzhou, Peoples R China
[2] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou, Peoples R China
来源
2024 2ND INTERNATIONAL CONFERENCE ON COMPUTER, VISION AND INTELLIGENT TECHNOLOGY, ICCVIT | 2024年
基金
中国国家自然科学基金;
关键词
Electrical resistance tomography; contactless imaging; target reconstruction; multi-frequency image fusion; transfer learning;
D O I
10.1109/ICCVIT63928.2024.10872516
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work develops an image-to-image target reconstruction network for capacitively coupled electrical resistance tomography. The novel target reconstruction network is constructed by two Unets to extract and fuse the multi-frequency features of the coarse images reconstructed by traditional image reconstruction algorithms, and incorporated with transfer learning to improve the generalization ability of the network. Experimental results show that the developed target reconstruction network is effective. The Unet-based image-to-image framework improves the target reconstruction quality with quantitatively higher image score. The introduced transfer learning strategy fills the gap between simulation data and experimental data, and further improves the performance of the network.
引用
收藏
页数:5
相关论文
共 12 条
[1]   A review on image reconstruction algorithms for electrical capacitance/resistance tomography [J].
Cui, Ziqiang ;
Wang, Qi ;
Xue, Qian ;
Fan, Wenru ;
Zhang, Lingling ;
Cao, Zhang ;
Sun, Benyuan ;
Wang, Huaxiang ;
Yang, Wuqiang .
SENSOR REVIEW, 2016, 36 (04) :429-445
[2]   HyperDense-Net: A Hyper-Densely Connected CNN for Multi-Modal Image Segmentation [J].
Dolz, Jose ;
Gopinath, Karthik ;
Yuan, Jing ;
Lombaert, Herve ;
Desrosiers, Christian ;
Ben Ayed, Ismail .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (05) :1116-1126
[3]   A New CCERT System With Shielding for Gas-Liquid Two-Phase Flow [J].
Fang, Xintong ;
Jiang, Yandan ;
Ji, Haifeng ;
Wang, Baoliang ;
Huang, Zhiyao .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (04) :4241-4251
[4]   TV-Net for 3-D Electromagnetic Tomography Image Reconstruction [J].
Fu, Wenying ;
Zhang, Ronghua ;
Le, Jinxun ;
Jia, Shuqing ;
Bai, Xuefeng ;
Li, Boyang ;
Yin, Wuliang .
IEEE SENSORS JOURNAL, 2024, 24 (21) :34907-34917
[5]   Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks [J].
Hamilton, S. J. ;
Hauptmann, A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (10) :2367-2377
[6]   Multifrequency Electrical Impedance Tomography Using Spectral Constraints [J].
Malone, Emma ;
dos Santos, Gustavo Sato ;
Holder, David ;
Arridge, Simon .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (02) :340-350
[7]   GCT-UNET: U-Net Image Segmentation Model for a Small Sample of Adherent Bone Marrow Cells Based on a Gated Channel Transform Module [J].
Qin, Jing ;
Liu, Tong ;
Wang, Zumin ;
Liu, Lu ;
Fang, Hui .
ELECTRONICS, 2022, 11 (22)
[8]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[9]   A Survey on Deep Transfer Learning [J].
Tan, Chuanqi ;
Sun, Fuchun ;
Kong, Tao ;
Zhang, Wenchang ;
Yang, Chao ;
Liu, Chunfang .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT III, 2018, 11141 :270-279
[10]   Shape Reconstruction With Multiphase Conductivity for Electrical Impedance Tomography Using Improved Convolutional Neural Network Method [J].
Wu, Yang ;
Chen, Bai ;
Liu, Kai ;
Zhu, Chengjun ;
Pan, Huaping ;
Jia, Jiabin ;
Wu, Hongtao ;
Yao, Jiafeng .
IEEE SENSORS JOURNAL, 2021, 21 (07) :9277-9287