On a perturbed Yamabe problem with mixed boundary conditions

被引:0
作者
Alghanemi, Azeb [1 ]
Ben Mahmoud, Randa [2 ]
Chtioui, Hichem [2 ]
机构
[1] King AbdulAziz Univ, Dept Math, Jeddah, Saudi Arabia
[2] Fac Sci Sfax, Dept Math, Sfax 3018, Tunisia
关键词
Laplace operator; Yamabe problem; Variational calculus; Lack of compactness; Topological methods; SCALAR-CURVATURE;
D O I
10.1007/s41808-025-00329-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of critical nonlinear Laplace equations which are perturbations of the Yamabe problem on bounded domains with mixed Dirichlet-Neumann boundary conditions. We study the lack of compactness of the associated variational problems and we prove existence of solutions.
引用
收藏
页码:397 / 431
页数:35
相关论文
共 17 条
[1]   Towards a Proof of Bahri-Coron's Type Theorem for Mixed Boundary Value Problems [J].
Alghanemi, Azeb ;
Chaabane, Slim ;
Chtioui, Hichem ;
Soumare, Abdellahi .
MATHEMATICS, 2023, 11 (08)
[2]   Topological hypothesis for the prescribed scalar curvature problem [J].
Aubin, T ;
Bahri, A .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (10) :843-850
[3]   THE SCALAR-CURVATURE PROBLEM ON THE STANDARD 3-DIMENSIONAL SPHERE [J].
BAHRI, A ;
CORON, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 95 (01) :106-172
[4]  
Bahri A., 1989, PITMAN RES NOTES MAT, V182
[5]   On the Chen-Lin Conjecture for the Prescribed Scalar Curvature Problem [J].
Chtioui, Hichem .
JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (09)
[6]   Conformal transformation of metrics on the n-sphere [J].
Chtioui, Hichem ;
Ben Mahmoud, Randa ;
Abuzaid, Dina A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 82 :66-81
[7]   Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions [J].
Colorado, E ;
Peral, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (02) :468-507
[8]  
Egnell H., 1989, NONLINEAR ANAL, V9, P763
[9]   POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV EXPONENT AND MIXED BOUNDARY-CONDITIONS [J].
GROSSI, M ;
PACELLA, F .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 116 :23-43
[10]  
Grossi M., 1990, REND MAT APPL, V10, P287