A large-scale retrospective study in metastatic breast cancer patients using circulating tumour DNA and machine learning to predict treatment outcome and progression-free survival

被引:0
作者
Beddowes, Emma J. [1 ,2 ,3 ,4 ,5 ,6 ]
Duran, Mario Ortega [1 ,2 ]
Karapanagiotis, Solon [7 ]
Martin, Alistair [1 ]
Gao, Meiling [1 ,3 ,4 ,5 ]
Masina, Riccardo [1 ]
Woitek, Ramona [3 ,4 ,5 ,8 ,9 ]
Tanner, James [8 ]
Tippin, Fleur [8 ]
Kane, Justine [2 ]
Lay, Jonathan [2 ]
Brouwer, Anja [10 ]
Sammut, Stephen-John [11 ,12 ]
Chin, Suet-Feung [1 ]
Gale, Davina [1 ,3 ,4 ,5 ]
Tsui, Dana W. Y. [13 ]
Dawson, Sarah-Jane [14 ]
Rosenfeld, Nitzan [1 ,3 ,4 ]
Callari, Maurizio [1 ]
Rueda, Oscar M. [7 ]
Caldas, Carlos [1 ,2 ,3 ,4 ,15 ,16 ]
机构
[1] Li Ka Shing Ctr, Canc Res UK Cambridge Res Inst, Cambridge, England
[2] Univ Cambridge, Dept Oncol, Cambridge, England
[3] Univ Cambridge, CRUK Cambridge Ctr, Cambridge, England
[4] Univ Cambridge, NIHR Cambridge Biomed Res Ctr, Cambridge, England
[5] Cambridge Univ Hosp NHS Fdn Trust, Cambridge, England
[6] Guys & St Thomas Hosp, London SE1 9RT, England
[7] Univ Cambridge, MRC Biostat Unit, Cambridge, England
[8] Univ Cambridge, Dept Radiol, Cambridge, England
[9] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Vienna, Austria
[10] Univ Antwerp, Ctr Oncol Res CORE, Antwerp, Belgium
[11] Inst Canc Res, Breast Canc Now Toby Robins Res Ctr, London, England
[12] Royal Marsden Hosp NHS Fdn Trust, London, England
[13] Mem Sloan Kettering Canc Ctr, New York, NY USA
[14] Peter MacCallum Canc Ctr, Melbourne, Australia
[15] Univ Cambridge, Dept Clin Biochem, Cambridge, England
[16] Univ Cambridge, Inst Metab Sci, Cambridge, England
基金
英国医学研究理事会; 奥地利科学基金会; 欧洲研究理事会; 英国惠康基金;
关键词
ctDNA; ichorCNA; machine learning; metastatic breast cancer; shallow whole genome sequencing; tumour fraction; COPY NUMBER ALTERATIONS; REGRESSION; MODELS;
D O I
10.1002/1878-0261.70015
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Monitoring levels of circulating tumour-derived DNA (ctDNA) provides both a noninvasive snapshot of tumour burden and also potentially clonal evolution. Here, we describe how applying a novel statistical model to serial ctDNA measurements from shallow whole genome sequencing (sWGS) in metastatic breast cancer patients produces a rapid and inexpensive predictive assessment of treatment response and progression-free survival. A cohort of 149 patients had DNA extracted from serial plasma samples (total 1013, mean samples per patient = 6.80). Plasma DNA was assessed using sWGS and the tumour fraction in total cell-free DNA estimated using ichorCNA. This approach was compared with ctDNA targeted sequencing and serial CA15-3 measurements. We identified a transition point of 7% estimated tumour fraction to stratify patients into different categories of progression risk using ichorCNA estimates and a time-dependent Cox Proportional Hazards model and validated it across different breast cancer subtypes and treatments, outperforming the alternative methods. We used the longitudinal ichorCNA values to develop a Bayesian learning model to predict subsequent treatment response with a sensitivity of 0.75 and a specificity of 0.66. In patients with metastatic breast cancer, a strategy of sWGS of ctDNA with longitudinal tracking of tumour fraction provides real-time information on treatment response. These results encourage a prospective large-scale clinical trial to evaluate the clinical benefit of early treatment changes based on ctDNA levels.
引用
收藏
页数:17
相关论文
共 40 条
[1]   Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors [J].
Adalsteinsson, Viktor A. ;
Ha, Gavin ;
Freeman, Samuel S. ;
Choudhury, Atish D. ;
Stover, Daniel G. ;
Parsons, Heather A. ;
Gydush, Gregory ;
Reed, Sarah C. ;
Rotem, Denisse ;
Rhoades, Justin ;
Loginov, Denis ;
Livitz, Dimitri ;
Rosebrock, Daniel ;
Leshchiner, Ignaty ;
Kim, Jaegil ;
Stewart, Chip ;
Rosenberg, Mara ;
Francis, Joshua M. ;
Zhang, Cheng-Zhong ;
Cohen, Ofir ;
Oh, Coyin ;
Ding, Huiming ;
Polak, Paz ;
Lloyd, Max ;
Mahmud, Sairah ;
Helvie, Karla ;
Merrill, Margaret S. ;
Santiago, Rebecca A. ;
O'Connor, Edward P. ;
Jeong, Seong H. ;
Leeson, Rachel ;
Barry, Rachel M. ;
Kramkowski, Joseph F. ;
Zhang, Zhenwei ;
Polacek, Laura ;
Lohr, Jens G. ;
Schleicher, Molly ;
Lipscomb, Emily ;
Saltzman, Andrea ;
Oliver, Nelly M. ;
Marini, Lori ;
Waks, Adrienne G. ;
Harshman, Lauren C. ;
Tolaney, Sara M. ;
Van Allen, Eliezer M. ;
Winer, Eric P. ;
Lin, Nancy U. ;
Nakabayashi, Mari ;
Taplin, Mary-Ellen ;
Johannessen, Cory M. .
NATURE COMMUNICATIONS, 2017, 8
[2]   USE OF THE ARCSINE AND SQUARE ROOT TRANSFORMATIONS FOR SUBJECTIVELY DETERMINED PERCENTAGE DATA [J].
AHRENS, WH ;
COX, DJ ;
BUDHWAR, G .
WEED SCIENCE, 1990, 38 (4-5) :452-458
[3]  
[Anonymous], Evaluation of anticancer medicinal products in man
[4]  
[Anonymous], Bioconductor HMMcopy
[5]   Overall Survival With Circulating Tumor Cell Count-Driven Choice of Therapy in Advanced Breast Cancer: A Randomized Trial [J].
Bidard, Francois-Clement ;
Kiavue, Nicolas ;
Jacot, William ;
Bachelot, Thomas ;
Dureau, Sylvain ;
Bourgeois, Hugues ;
Goncalves, Anthony ;
Brain, Etienne ;
Ladoire, Sylvain ;
Dalenc, Florence ;
Gligorov, Joseph ;
Teixeira, Luis ;
Emile, George ;
Ferrero, Jean-Marc ;
Loirat, Delphine ;
Cabel, Luc ;
Kadi, Amir ;
Dieras, Veronique ;
Alix-Panabieres, Catherine ;
Pierga, Jean-Yves .
JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (04) :383-389
[6]   HER-2 status of circulating tumor cells in a metastatic breast cancer cohort: A comparative study on characterization techniques [J].
Brouwer, Anja ;
De Laere, Bram ;
van Dam, Pieter-Jan ;
Peeters, Dieter ;
Van Haver, Jasper ;
Sluydts, Ellen ;
El Moussaoui, Ali ;
Mendelaar, Pauline ;
Kraan, Jaco ;
Peeters, Marc ;
Van Laere, Steven ;
Dirix, Luc .
PLOS ONE, 2019, 14 (09)
[7]   brms: An R Package for Bayesian Multilevel Models Using Stan [J].
Buerkner, Paul-Christian .
JOURNAL OF STATISTICAL SOFTWARE, 2017, 80 (01) :1-28
[8]   Stan: A Probabilistic Programming Language [J].
Carpenter, Bob ;
Gelman, Andrew ;
Hoffman, Matthew D. ;
Lee, Daniel ;
Goodrich, Ben ;
Betancourt, Michael ;
Brubaker, Marcus A. ;
Guo, Jiqiang ;
Li, Peter ;
Riddell, Allen .
JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01) :1-29
[9]   Emerging landscape of oncogenic signatures across human cancers [J].
Ciriello, Giovanni ;
Miller, Martin L. ;
Aksoy, Buelent Arman ;
Senbabaoglu, Yasin ;
Schultz, Nikolaus ;
Sander, Chris .
NATURE GENETICS, 2013, 45 (10) :1127-U247
[10]   The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups [J].
Curtis, Christina ;
Shah, Sohrab P. ;
Chin, Suet-Feung ;
Turashvili, Gulisa ;
Rueda, Oscar M. ;
Dunning, Mark J. ;
Speed, Doug ;
Lynch, Andy G. ;
Samarajiwa, Shamith ;
Yuan, Yinyin ;
Graef, Stefan ;
Ha, Gavin ;
Haffari, Gholamreza ;
Bashashati, Ali ;
Russell, Roslin ;
McKinney, Steven ;
Langerod, Anita ;
Green, Andrew ;
Provenzano, Elena ;
Wishart, Gordon ;
Pinder, Sarah ;
Watson, Peter ;
Markowetz, Florian ;
Murphy, Leigh ;
Ellis, Ian ;
Purushotham, Arnie ;
Borresen-Dale, Anne-Lise ;
Brenton, James D. ;
Tavare, Simon ;
Caldas, Carlos ;
Aparicio, Samuel .
NATURE, 2012, 486 (7403) :346-352