AI-assisted diffuse correlation tomography for identifying breast cancer

被引:0
作者
Zhang, Ruizhi [1 ]
Lu, Jianju [2 ]
Di, Wenqi [1 ]
Gui, Zhiguo [1 ]
Chan, Shun Wan [3 ]
Yang, Fengbao [1 ]
Shang, Yu [4 ]
机构
[1] North Univ China, State Key Lab Dynam Measurement Technol, Taiyuan, Peoples R China
[2] Jiaxing Univ, Affiliated Hosp, Hosp Jiaxing 1, Jiaxing, Peoples R China
[3] Technol & Higher Educ Inst Hong Kong, Dept Food & Hlth Sci, Hong Kong, Peoples R China
[4] Dongguan Univ Technol, Sch Life & Hlth Technol, Dongguan, Peoples R China
关键词
artificial intelligence; breast cancer; clinical imaging; microvascular blood flow; diagnosis; BLOOD-FLOW; MAMMOGRAPHY; ULTRASOUND; BENIGN;
D O I
10.1117/1.JBO.30.5.055001
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Significance Diffuse correlation tomography (DCT) is an emerging technique for the noninvasive measurement of breast microvascular blood flow, whereas its capability to categorize benign and malignant breast lesions has not been extensively validated thus far, due to the difficulties in instrumentation, image reconstruction algorithms, and appropriate approaches for imaging analyses. Aim This artificial intelligence (AI)-assisted DCT instrumentation was constructed based on a unique source-detector array and image reconstruction algorithm. Approach The DCT images of breasts were obtained from 61 females, and AI models were utilized to classify breast lesions. During this process, the blood flow images were either extracted as feature parameters or as global inputs to the AI models. Results As the validations of DCT instrumentation, the blood flow images obtained from longitudinal monitoring of healthy subjects demonstrated the stability of DCT measurements. For patients with breast diseases, comprehensive analyses yield an AI-assisted classification with excellent performance for distinguishing between benign and malignant breast lesions, at an accuracy of 97%. Conclusions The AI-assisted DCT reflects functional abnormalities that are associated with cancellous-induced high metabolic demands, thus demonstrating the great potential for early diagnosis and timely therapeutic assessment of breast cancer, e.g., prior to the tumor formation or proliferation of microvascular networks.
引用
收藏
页数:17
相关论文
共 55 条
[1]  
Ahrens J.P., 2005, The Visualization Handbook, DOI DOI 10.1016/B978-012387582-2/50038-1
[2]   Current State of Breast Cancer Diagnosis, Treatment, and Theranostics [J].
Bhushan, Arya ;
Gonsalves, Andrea ;
Menon, Jyothi U. .
PHARMACEUTICS, 2021, 13 (05)
[3]   Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].
Bray, Freddie ;
Laversanne, Mathieu ;
Sung, Hyuna ;
Ferlay, Jacques ;
Siegel, Rebecca L. ;
Soerjomataram, Isabelle ;
Jemal, Ahmedin .
CA-A CANCER JOURNAL FOR CLINICIANS, 2024, 74 (03) :229-263
[4]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[5]   Near-infrared diffuse optical monitoring of cerebral blood flow and oxygenation for the prediction of vasovagal syncope [J].
Cheng, Ran ;
Shang, Yu ;
Wang, Siqi ;
Evans, Joyce M. ;
Rayapati, Abner ;
Randall, David C. ;
Yu, Guoqiang .
JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (01)
[6]  
Choe R., 2016, BIOMED OPT, pCTu4A.4, DOI [10.1364/CANCER.2016.CTu4A.4, DOI 10.1364/CANCER.2016.CTU4A.4]
[7]   Optically Measured Microvascular Blood Flow Contrast of Malignant Breast Tumors [J].
Choe, Regine ;
Putt, Mary E. ;
Carlile, Peter M. ;
Durduran, Turgut ;
Giammarco, Joseph M. ;
Busch, David R. ;
Jung, Ki Won ;
Czerniecki, Brian J. ;
Tchou, Julia ;
Feldman, Michael D. ;
Mies, Carolyn ;
Rosen, Mark A. ;
Schnall, Mitchell D. ;
DeMichele, Angela ;
Yodh, Arjun G. .
PLOS ONE, 2014, 9 (06)
[8]   Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography [J].
Choe, Regine ;
Konecky, Soren D. ;
Corlu, Alper ;
Lee, Kijoon ;
Durduran, Turgut ;
Busch, David R. ;
Pathak, Saurav ;
Czerniecki, Brian J. ;
Tchou, Julia ;
Fraker, Douglas L. ;
DeMichele, Angela ;
Chance, Britton ;
Arridge, Simon R. ;
Schweiger, Martin ;
Culver, Joseph P. ;
Schnall, Mitchell D. ;
Putt, Mary E. ;
Rosen, Mark A. ;
Yodh, Arjun G. .
JOURNAL OF BIOMEDICAL OPTICS, 2009, 14 (02)
[9]   Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures [J].
Chung, So Hyun ;
Feldman, Michael D. ;
Martinez, Daniel ;
Kim, Helen ;
Putt, Mary E. ;
Busch, David R. ;
Tchou, Julia ;
Czerniecki, Brian J. ;
Schnall, Mitchell D. ;
Rosen, Mark A. ;
DeMichele, Angela ;
Yodh, Arjun G. ;
Choe, Regine .
BREAST CANCER RESEARCH, 2015, 17
[10]   Breast cancer differential diagnosis using diffuse optical spectroscopic imaging and regression with z-score normalized data [J].
Cochran, Jeffrey M. ;
Leproux, Anais ;
Busch, David R. ;
O'Sullivan, Thomas D. ;
Yang, Wei ;
Mehta, Rita S. ;
Police, Alice M. ;
Tromberg, Bruce J. ;
Yodh, Arjun G. .
JOURNAL OF BIOMEDICAL OPTICS, 2021, 26 (02)