Segmentation of Individual Trees in TLS Point Clouds via Graph Optimization

被引:0
作者
Liu, Yuchan [1 ,2 ]
Chen, Dong [1 ,3 ]
Na, Jiaming [1 ,3 ]
Peethambaran, Jiju [4 ]
Pfeifer, Norbert [5 ]
Zhang, Liqiang [6 ]
机构
[1] Nanjing Forestry Univ, Coll Civil Engn, Nanjing 210037, Peoples R China
[2] Chuzhou Univ, Anhui Prov Key Lab Phys Geog Environm, Chuzhou 239000, Peoples R China
[3] Nanjing Forestry Univ, Jiangsu Highway Intelligent Detect & Low Carbon Ma, Nanjing 210037, Peoples R China
[4] St Marys Univ, Dept Math & Comp Sci, Halifax, NS B3H 3C3, Canada
[5] TUWien, Dept Geodesy & Geoinformat, A-1040 Vienna, Austria
[6] Beijing Normal Univ, Fac Geog Sci, Dept Geog, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2025年 / 63卷
基金
中国国家自然科学基金;
关键词
Vegetation; Forestry; Point cloud compression; Accuracy; Feature extraction; Three-dimensional displays; Vectors; Deep learning; Solid modeling; Location awareness; Graph optimization; individual tree segmentation; supervoxel segmentation; terrestrial laser scanning (TLS) point clouds; trunk localization; SPECIES CLASSIFICATION; TERRESTRIAL; LIDAR; FOREST; ALGORITHMS; FEATURES; MACHINE;
D O I
10.1109/TGRS.2025.3567357
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Individual tree segmentation from terrestrial laser scanning (TLS) point clouds is essential for precise forest inventory, instance-level tree modeling, and the estimation of forest stock volume. However, current instance-level segmentation techniques encounter significant challenges in complex forest environments, particularly those characterized by dense understory vegetation and substantial crown overlap in natural forests. These complexities reduce segmentation accuracy and limit the generalizability of existing methods across diverse forest types. This article presents a unified method for individual tree segmentation that integrates trunk localization with crown segmentation. The trunk localization uses normal vector features to eliminate nontrunk slice points, employs an enhanced density-based spatial clustering of applications with noise (DBSCAN) algorithm for trunk slice separation, and refines trunk positions by fitting circular-like trunk slices using the Hough transform (HT). This integrated approach ensures precise segmentation and optimization of final trunk positions. Subsequently, a graph-based optimization method is applied for crown segmentation. This method incorporates supervoxel technology, an optimal Euclidean distance metric between supervoxels, and a supervoxel similarity metric to construct an optimal undirected graph. Tree crown supervoxels are segmented by tracing the shortest path from the crown supervoxels to their corresponding tree roots. We validated the proposed method on eight sample plots representing various complexities and forest types. For tree trunk localization, the proposed method achieved an average Mean_accuracy of 0.761, which is 27% higher than the best result among the three traditional methods. For crown segmentation, it achieved an average mean intersection over union (mIoU) of 0.645, marking a 31% improvement over the best baseline performance.
引用
收藏
页数:21
相关论文
共 80 条
[1]   Using terrestrial laser scanning for characterizing tree structural parameters and their changes under different management in a Mediterranean open woodland [J].
Bogdanovich, Ekaterina ;
Perez-Priego, Oscar ;
El-Madany, Tarek S. ;
Guderle, Marcus ;
Pacheco-Labrador, Javier ;
Levick, Shaun R. ;
Moreno, Gerardo ;
Carrara, Arnaud ;
Martin, M. Pilar ;
Migliavacca, Mirco .
FOREST ECOLOGY AND MANAGEMENT, 2021, 486
[2]   Individual tree volume estimation with terrestrial laser scanning: Evaluating reconstructive and allometric approaches [J].
Bornand, Aline ;
Rehush, Nataliia ;
Morsdorf, Felix ;
Thurig, Esther ;
Abegg, Meinrad .
AGRICULTURAL AND FOREST METEOROLOGY, 2023, 341
[3]   Non-destructive estimation of individual tree biomass: Allometric models, terrestrial and UAV laser scanning [J].
Brede, Benjamin ;
Terryn, Louise ;
Barbier, Nicolas ;
Bartholomeus, Harm M. ;
Bartolo, Renee ;
Calders, Kim ;
Derroire, Geraldine ;
Moorthy, Sruthi M. Krishna ;
Lau, Alvaro ;
Levick, Shaun R. ;
Raumonen, Pasi ;
Verbeeck, Hans ;
Wang, Di ;
Whiteside, Tim ;
van der Zee, Jens ;
Herold, Martin .
REMOTE SENSING OF ENVIRONMENT, 2022, 280
[4]   Extracting individual trees from lidar point clouds using treeseg [J].
Burt, Andrew ;
Disney, Mathias ;
Calders, Kim .
METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (03) :438-445
[5]   Laser scanning reveals potential underestimation of biomass carbon in temperate forest [J].
Calders, Kim ;
Verbeeck, Hans ;
Burt, Andrew ;
Origo, Niall ;
Nightingale, Joanne ;
Malhi, Yadvinder ;
Wilkes, Phil ;
Raumonen, Pasi ;
Bunce, Robert G. H. ;
Disney, Mathias .
ECOLOGICAL SOLUTIONS AND EVIDENCE, 2022, 3 (04)
[6]   A Two-Stage Approach for Individual Tree Segmentation From TLS Point Clouds [J].
Chang, Lihong ;
Fan, Hongchao ;
Zhu, Ningning ;
Dong, Zhen .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 :8682-8693
[7]   Estimating forest above-ground biomass with terrestrial laser scanning: Current status and future directions [J].
Demol, Miro ;
Verbeeck, Hans ;
Gielen, Bert ;
Armston, John ;
Burt, Andrew ;
Disney, Mathias ;
Duncanson, Laura ;
Hackenberg, Jan ;
Kukenbrink, Daniel ;
Lau, Alvaro ;
Ploton, Pierre ;
Sewdien, Artie ;
Stovall, Atticus ;
Takoudjou, Stephane Momo ;
Volkova, Liubov ;
Weston, Christopher ;
Wortel, Verginia ;
Calders, Kim .
METHODS IN ECOLOGY AND EVOLUTION, 2022, 13 (08) :1628-1639
[8]  
Dijkstra Edsger Wybe, 1959, NUMERISCHE MATH, DOI [10.1007/BF01386390, DOI 10.1007/BF01386390]
[9]   CenterNet: Keypoint Triplets for Object Detection [J].
Duan, Kaiwen ;
Bai, Song ;
Xie, Lingxi ;
Qi, Honggang ;
Huang, Qingming ;
Tian, Qi .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6568-6577
[10]   USE OF HOUGH TRANSFORMATION TO DETECT LINES AND CURVES IN PICTURES [J].
DUDA, RO ;
HART, PE .
COMMUNICATIONS OF THE ACM, 1972, 15 (01) :11-&