Tailoring Fault-Tolerance to Trotter Circuits

被引:0
作者
Chen, Zhuangzhuang [1 ]
Rengaswamy, Narayanan [1 ]
机构
[1] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA
来源
2024 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING, QCE, VOL 1 | 2024年
基金
美国国家科学基金会;
关键词
Quantum error correction; fault-tolerance; Trotter circuits; quantum simulation; error-detecting code; Clifford gates; flag gadgets; logical Clifford synthesis (LCS);
D O I
10.1109/QCE60285.2024.00025
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The standard approach to universal fault-tolerant quantum computing is to develop a general purpose quantum error correction mechanism that can implement a universal set of logical gates fault-tolerantly. However, we know that quantum computers provide a significant quantum advantage only for specific quantum algorithms. Hence, a universal quantum computer can likely gain from compiling such specific algorithms using tailored quantum error correction schemes. In this work, we take the first steps towards such algorithm-tailored quantum fault-tolerance. We consider Trotter circuits in quantum simulation, which is an important application of quantum computing. We develop a solve-and-stitch algorithm to systematically synthesize physical realizations of Clifford Trotter circuits on the well-known [[n, n - 2, 2]] error-detecting code family. Our analysis shows that this family implements Trotter circuits with optimal depth, thereby serving as an illuminating example of tailored quantum error correction. We achieve fault-tolerance for these circuits using flag gadgets, which add minimal overhead. The solve-and-stitch algorithm has the potential to scale beyond this specific example and hence provide a principled approach to tailored fault-tolerance in quantum computing.
引用
收藏
页码:134 / 140
页数:7
相关论文
共 19 条
[1]  
Ali H, 2024, Arxiv, DOI arXiv:2403.00706
[2]  
Au-Yeung R, 2024, Arxiv, DOI arXiv:2312.14904
[3]   Fault-tolerant quantum computation with few qubits [J].
Chao, Rui ;
Reichardt, Ben W. .
NPJ QUANTUM INFORMATION, 2018, 4
[4]  
Chen ZZ, 2024, Arxiv, DOI arXiv:2404.11953
[5]   Low-overhead fault-tolerant quantum computing using long-range connectivity [J].
Cohen, Lawrence Z. ;
Kim, Isaac H. ;
Bartlett, Stephen D. ;
Brown, Benjamin J. .
SCIENCE ADVANCES, 2022, 8 (20)
[6]  
Da Silva MP, 2024, Arxiv, DOI [arXiv:2404.02280, DOI 10.48550/ARXIV.2404.02280]
[7]   Practical quantum advantage in quantum simulation [J].
Daley, Andrew J. ;
Bloch, Immanuel ;
Kokail, Christian ;
Flannigan, Stuart ;
Pearson, Natalie ;
Troyer, Matthias ;
Zoller, Peter .
NATURE, 2022, 607 (7920) :667-676
[8]  
Dalzell AM, 2023, Arxiv, DOI arXiv:2310.03011
[9]   Clifford group, stabilizer states, and linear and quadratic operations over GF(2) [J].
Dehaene, J ;
De Moor, B .
PHYSICAL REVIEW A, 2003, 68 (04) :10
[10]   Restrictions on Transversal Encoded Quantum Gate Sets [J].
Eastin, Bryan ;
Knill, Emanuel .
PHYSICAL REVIEW LETTERS, 2009, 102 (11)