Coupled Electrochemical-Thermal-Mechanical Modeling and Simulation of Multi-Scale Heterogeneous Lithium-Ion Batteries

被引:0
作者
Wang, Haoran [1 ]
Li, Peichao [1 ]
Wang, Keyong [1 ]
Zhang, Hengyun [1 ]
机构
[1] Shanghai Univ Engn Sci, Sch Mech & Automot Engn, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
cell thermal expansion; electrochemical-thermal-mechanical coupling; gradient porosity; lithium-ion battery; mass transfer; multi-scale heterogeneous model; OPTIMIZATION; VALIDATION; ELECTRODES; DISCHARGE;
D O I
10.1002/adts.202500250
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, a multi-scale heterogeneous electrochemical-thermo-mechanical coupling model (MHETM) is proposed. A two-dimensional heterogeneous gradient porosity electrode model (U1, G2, and G3) and a 3D macroscopic cell model are combined to realize a multi-scale coupled multi-physics field simulation of lithium iron phosphate (LFP) battery from microscopic particles to macroscopic cells. The MHETM model has higher accuracy and can more accurately describe the lithium ion transport process inside the active particles. The results show that the gradient porosity design optimizes the lithium ion diffusion path and improves the diffusion rate and end-of-discharge concentration. Meanwhile, the maximum stress and displacement of the G3 model are significantly lower than those of the U1 model, respectively. In addition, the thermal-mechanical coupling analysis revealed the negative correlation between thermal stress and thermal expansion. The introduction of the macro-thermal model further facilitates the lithium ion transport, resulting in an increase in the concentration maxima of both the U1 and G3 models, with a more significant increase in the G3 model. The MHETM model provides an effective tool for an in-depth understanding of the complex multi-physical field coupling mechanism inside the lithium-ion batteries.
引用
收藏
页数:17
相关论文
共 38 条
[1]   Impact of Active Particle in Lithium-Ion Battery Probed by a Microstructure Resolved Model [J].
Akbar, Ali ;
Weng, Junqi ;
Zhang, Xu ;
Li, Ping ;
Ye, Guanghua ;
Zhou, Xinggui .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (20) :8971-8982
[2]   Is silicon worth it? Modelling degradation in composite silicon-graphite lithium-ion electrodes [J].
Bonkile, Mayur P. ;
Jiang, Yang ;
Kirkaldy, Niall ;
Sulzer, Valentin ;
Timms, Robert ;
Wang, Huizhi ;
Offer, Gregory ;
Wu, Billy .
JOURNAL OF POWER SOURCES, 2024, 606
[3]   Coupled electrochemical-thermal-mechanical stress modelling in composite silicon/graphite lithium-ion battery electrodes [J].
Bonkile, Mayur P. ;
Jiang, Yang ;
Kirkaldy, Niall ;
Sulzer, Valentin ;
Timms, Robert ;
Wang, Huizhi ;
Offer, Gregory ;
Wu, Billy .
JOURNAL OF ENERGY STORAGE, 2023, 73
[4]  
Chen W., 2023, J. Chongqing Univ. Sci. Technol, V37, P184
[5]  
[陈晓宇 Chen Xiaoyu], 2022, [储能科学与技术, Energy Storage Science and Technology], V11, P2995
[6]  
[陈怡沁 Chen Yiqin], 2021, [化工学报, CIESC Journal], V72, P1078
[7]   Tortuosity estimation and microstructure optimization of non-uniform porous heterogeneous electrodes [J].
Chen, Zongli ;
Zhao, Ying .
JOURNAL OF POWER SOURCES, 2024, 596
[8]   Application status and future of multi-scale numerical models for lithium ion battery [J].
Cheng Yun ;
Li Jie ;
Jia Ming ;
Tang Yi-Wei ;
Du Shuang-Long ;
Ai Li-Hua ;
Yin Bao-Hua ;
Ai Liang .
ACTA PHYSICA SINICA, 2015, 64 (21)
[9]   STRUCTURE REFINEMENT OF THE SPINEL-RELATED PHASES LI2MN2O4 AND LI0.2MN2O4 [J].
DAVID, WIF ;
THACKERAY, MM ;
DEPICCIOTTO, LA ;
GOODENOUGH, JB .
JOURNAL OF SOLID STATE CHEMISTRY, 1987, 67 (02) :316-323
[10]   Comparison of modeling predictions with experimental data from plastic lithium ion cells [J].
Doyle, M ;
Newman, J ;
Gozdz, AS ;
Schmutz, CN ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (06) :1890-1903