First-principles study of the electronic structure and mechanical properties of TiN||SrTiO3 interfaces

被引:0
作者
Fu, Wenqi [1 ]
Han, Jia [2 ,3 ]
Sha, Mandi [1 ,3 ]
Yin, Deqiang [1 ]
机构
[1] Chongqing Univ, Coll Aerosp Engn, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China
[3] CSSC Haizhuang Windpower Co Ltd, 30 Jinyu Ave, Chongqing, Peoples R China
关键词
TiN||SrTiO 3 interface; First-principles calculations; Electronic structure; Mechanical properties; GENERALIZED GRADIENT APPROXIMATION; TOTAL-ENERGY CALCULATIONS; AB-INITIO; MOLECULAR-DYNAMICS; ELASTIC PROPERTIES; THIN-FILMS; SRTIO3; INTEGRATION; TRANSITION; NITRIDES;
D O I
10.1016/j.apsusc.2025.163781
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Titanium nitride (TiN) as a buffer layer can effectively solve the problems of lattice mismatch and incompatible growth conditions faced by strontium titanate (SrTiO3) when integrating into semiconductors. However, there are fewer studies on the electronic structure and mechanical properties of TiN||SrTiO3 heterointerfaces. Therefore, in this study, we investigate the electronic structure and mechanical properties of two preferred TiN (110)||SrTiO3(1 1 0) interfaces based on first-principles calculations. The results show that the potentially candidated interfaces constructed by both N (Ti) termination of TiN and corresponding counterpart of SrTiO3 are electrically conductive and that the band gap of SrTiO3 broadens with increasing thickness. Using various analytical methods, we find that the presence of O2-termination improves the bond strength of the interfaces, and the shear strength and interfacial toughness of the SrTiO-terminated preferred interface are superior to those of the O2-terminated preferred interface. These findings have important implications for the application of TiN|| SrTiO3 heterointerfacesin microelectronic devices.
引用
收藏
页数:12
相关论文
共 62 条
[21]   Metal induced gap states at alkali halide/metal interface [J].
Kiguchi, M ;
Yoshikawa, G ;
Ikeda, S ;
Saiki, K .
APPLIED SURFACE SCIENCE, 2004, 237 (1-4) :494-497
[22]   Integration of artificial SrTiO3/BaTiO3 superlattices on Si substrates using a TiN buffer layer by pulsed laser deposition method [J].
Kim, TU ;
Kim, BR ;
Lee, WJ ;
Moon, JH ;
Lee, BT ;
Kim, JH .
JOURNAL OF CRYSTAL GROWTH, 2006, 289 (02) :540-546
[23]   AB-INITIO MOLECULAR-DYNAMICS SIMULATION OF THE LIQUID-METAL AMORPHOUS-SEMICONDUCTOR TRANSITION IN GERMANIUM [J].
KRESSE, G ;
HAFNER, J .
PHYSICAL REVIEW B, 1994, 49 (20) :14251-14269
[24]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[25]   From ultrasoft pseudopotentials to the projector augmented-wave method [J].
Kresse, G ;
Joubert, D .
PHYSICAL REVIEW B, 1999, 59 (03) :1758-1775
[26]   Epitaxial growth mechanism of perovskite (111) SrTiO3 on wurtzite (0002) GaN with single unit- cell TiN buffer layers [J].
Li, Guanjie ;
Li, Xiaomin ;
Chen, Yongbo ;
Jia, Shasha ;
Xu, Xiaoke .
APPLIED SURFACE SCIENCE, 2019, 465 :1055-1060
[27]   Epitaxial integration of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (111) thin films on GaN (0002) with La0.5Sr0.5CoO3/TiO2 buffer layers [J].
Li, Guanjie ;
Li, Xiaomin ;
Bi, Zhijie ;
Chen, Yongbo ;
Xu, Xiaoke .
MATERIALS LETTERS, 2018, 216 :224-227
[28]   Dislocation-related surface-layer effect in SrTiO3 single crystals [J].
Li, Yide ;
Liu, Zhijie ;
Cao, Wenjun ;
Huang, Shouguo ;
Li, Feng ;
Guo, Youmin ;
Xu, Yichun ;
Wang, Chunchang .
JOURNAL OF APPLIED PHYSICS, 2023, 133 (13)
[29]   Activated layered magnetism from bulk TiN [J].
Lin, Chiung-Yuan ;
Yang, Szu-Wen ;
Ou, Keng-Liang ;
Jones, Barbara A. .
PHYSICAL REVIEW MATERIALS, 2019, 3 (12)
[30]   Investigation of ideal shear strength of dilute binary and ternary Ni-based alloys using first-principles calculations, CALPHAD modeling and correlation analysis [J].
Lin, Shuang ;
Shang, Shun-Li ;
Shimanek, John D. ;
Wang, Yi ;
Beese, Allison M. ;
Liu, Zi-Kui .
MATERIALS TODAY COMMUNICATIONS, 2025, 42