Specularity Factorization for Low-Light Enhancement

被引:2
作者
Saini, Saurabh [1 ]
Narayanan, P. J. [1 ]
机构
[1] IIIT Hyderabad, KCIS, CVIT, Hyderabad, Telangana, India
来源
2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024 | 2024年
关键词
ADAPTIVE HISTOGRAM EQUALIZATION; QUALITY ASSESSMENT; IMAGE; ALGORITHM; REPRESENTATION; NETWORK; FUSION; SIGNAL;
D O I
10.1109/CVPR52733.2024.00009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new additive image factorization technique that treats images to be composed of multiple latent specular components which can be simply estimated recursively by modulating the sparsity during decomposition. Our model-driven RSFNet estimates these factors by unrolling the optimization into network layers requiring only a few scalars to be learned. The resultant factors are interpretable by design and can be fused for different image enhancement tasks via a network or combined directly by the user in a controllable fashion. Based on RSFNet, we detail a zero-reference Low Light Enhancement (LLE) application trained without paired or unpaired supervision. Our system improves the state-of-the-art performance on standard benchmarks and achieves better generalization on multiple other datasets. We also integrate our factors with other task specific fusion networks for applications like deraining, deblurring and dehazing with negligible overhead thereby highlighting the multi-domain and multi-task generalizability of our proposed RSFNet. The code and data is released for reproducibility on the project homepage(1).
引用
收藏
页码:1 / 12
页数:12
相关论文
共 106 条
[1]   SPARSE CODING WITH ANOMALY DETECTION [J].
Adler, Amir ;
Elad, Michael ;
Hel-Or, Yacov ;
Rivlin, Ehud .
2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2013,
[2]   Learning Multi-Scale Photo Exposure Correction [J].
Afifi, Mahmoud ;
Derpanis, Konstantinos G. ;
Ommer, Bjoern ;
Brown, Michael S. .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :9153-9163
[3]   Semantic Soft Segmentation [J].
Aksoy, Yagiz ;
Oh, Tae-Hyun ;
Paris, Sylvain ;
Pollefeys, Marc ;
Matusik, Wojciech .
ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (04)
[4]  
[Anonymous], 2023, Adobe Photoshop
[5]   ShadingNet: Image Intrinsics by Fine-Grained Shading Decomposition [J].
Baslamisli, Anil S. ;
Das, Partha ;
Le, Hoang-An ;
Karaoglu, Sezer ;
Gevers, Theo .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (08) :2445-2473
[6]   Intrinsic Images in the Wild [J].
Bell, Sean ;
Bala, Kavita ;
Snavely, Noah .
ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (04)
[7]   Deep Reparametrization of Multi-Frame Super-Resolution and Denoising [J].
Bhat, Goutam ;
Danelljan, Martin ;
Yu, Fisher ;
Van Gool, Luc ;
Timofte, Radu .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :2440-2450
[8]   Deep Burst Super-Resolution [J].
Bhat, Goutam ;
Danelljan, Martin ;
Van Gool, Luc ;
Timofte, Radu .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :9205-9214
[9]   Intrinsic Decompositions for Image Editing [J].
Bonneel, Nicolas ;
Kovacs, Balazs ;
Paris, Sylvain ;
Bala, Kavita .
COMPUTER GRAPHICS FORUM, 2017, 36 (02) :593-609
[10]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122