On a Diophantine equation with four prime variables

被引:0
作者
Huang, Jing [1 ]
Zhai, Wenguang [2 ]
Zhang, Deyu [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R China
[2] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 06期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Diophantine equation; prime; exponential sum;
D O I
10.3934/math.2025652
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let [alpha] denote the integral part of the real number alpha, and let N be a sufficiently large integer. In this paper, we proved that for 1 < c < 38/29, almost all n is an element of (N, 2N] can be represented as [p(1)(c)] + [p(2)(c)] + [p(3)(c)] + [p(4)(c)] = n, where p(1), p(2), p(3), p(4) are prime numbers.
引用
收藏
页码:14488 / 14501
页数:14
相关论文
共 18 条
[1]  
Arkhipov G. I., 1984, Izv. Akad. Nauk SSSR, V48, P1138
[2]   SOME DIOPHANTINE EQUATIONS AND INEQUALITIES WITH PRIMES [J].
Baker, Roger .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2021, 64 (02) :203-250
[3]  
Buriev K., 1989, Thesis
[4]   On a Diophantine equation involving primes [J].
Cai, Yingchun .
RAMANUJAN JOURNAL, 2019, 50 (01) :151-162
[5]  
DESHOUILLERS JM, 1973, B SOC MATH FR, V101, P285
[6]  
GRAHAM SW, 1991, CORPUTS METHOD EXPON
[7]   THE PJATECKII-SAPIRO PRIME NUMBER THEOREM [J].
HEATHBROWN, DR .
JOURNAL OF NUMBER THEORY, 1983, 16 (02) :242-266
[8]  
Ivic A., The Riemann zeta-function theory and applications
[9]  
Kumchev A, 1998, ACTA ARITH, V83, P117
[10]  
Laporta M., 1999, Mat. Balkanica, V13, P119