Stochastic fractional conservation laws: large deviation principle, central limit theorem and moderate deviation principle

被引:0
作者
Behera, Soumya Ranjan [1 ]
Majee, Ananta K. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
来源
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS | 2025年
关键词
Stochastic fractional conservation Laws; Kinetic formulation; Weak convergence approach; Large deviation principle; Central limit theorem; Moderate deviation principle; CONTINUOUS DEPENDENCE ESTIMATE; HYPERBOLIC CAUCHY-PROBLEM; EQUATIONS; DRIVEN; FORMULATION;
D O I
10.1007/s40072-025-00356-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we establish the Freidlin-Wentzell type large deviation principle for stochastic fractional conservation laws with small multiplicative noise in the kinetic formulation framework. The weak convergence method and the doubling of variables method play a crucial role. As a consequence, we also establish the central limit theorem and moderate deviation principle for the underlying problem under constant initial data.
引用
收藏
页数:46
相关论文
共 63 条
[1]   Entropy formulation for fractal conservation laws [J].
Alibaud, Nathael .
JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (01) :145-175
[2]   Nonlocal dissipation measure andL1kinetic theory for fractional conservation laws [J].
Alibaud, Nathael ;
Andreianov, Boris ;
Ouedraogo, Adama .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (09) :1213-1251
[3]  
Azencott R., 1980, LECT NOTES MATH, V774, P1
[4]   A degenerate parabolic-hyperbolic Cauchy problem with a stochastic force [J].
Bauzet, Caroline ;
Vallet, Guy ;
Wittbold, Petra .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2015, 12 (03) :501-533
[5]   THE CAUCHY PROBLEM FOR CONSERVATION LAWS WITH A MULTIPLICATIVE STOCHASTIC PERTURBATION [J].
Bauzet, Caroline ;
Vallet, Guy ;
Wittbold, Petra .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2012, 9 (04) :661-709
[6]   A fractional degenerate parabolic-hyperbolic Cauchy problem with noise [J].
Bhauryal, Neeraj ;
Koley, Ujjwal ;
Vallet, Guy .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 284 :433-521
[7]   The Cauchy problem for fractional conservation laws driven by Levy noise [J].
Bhauryal, Neeraj ;
Koley, Ujjwal ;
Vallet, Guy .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (09) :5310-5365
[8]   On the Cauchy problem of a degenerate parabolic-hyperbolic PDE with Levy noise [J].
Biswas, Imran H. ;
Majee, Ananta K. ;
Vallet, Guy .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :809-844
[9]   Conservation laws driven by Levy white noise [J].
Biswas, Imran H. ;
Karlsen, Kenneth H. ;
Majee, Ananta K. .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2015, 12 (03) :581-654
[10]   Continuous dependence estimate for conservation laws with Levy noise [J].
Biswas, Imran H. ;
Koley, Ujjwal ;
Majee, Ananta K. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (09) :4683-4706